{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "c7ecee26", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Glucocorticoid_Sensitivity\"\n", "cohort = \"GSE65645\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Glucocorticoid_Sensitivity\"\n", "in_cohort_dir = \"../../input/GEO/Glucocorticoid_Sensitivity/GSE65645\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/GSE65645.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE65645.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE65645.csv\"\n", "json_path = \"../../output/preprocess/Glucocorticoid_Sensitivity/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "0e81885d", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "26a95b92", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "931ea8be", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "7e51426c", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import numpy as np\n", "import json\n", "from typing import Optional, Callable, Dict, Any, List\n", "\n", "# 1. Gene Expression Data Availability\n", "# Looking at the background info, this is an Agilent microarray with lncRNA expression data\n", "# It's likely to contain gene expression data, though focused on lncRNAs\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait (Glucocorticoid_Sensitivity)\n", "# Looking at the background info, this study involves responsiveness to prednisolone/prednisone (glucocorticoids)\n", "# From the sample characteristics dictionary, we can use the 'translocation' information as it relates to \n", "# glucocorticoid sensitivity in B-ALL\n", "trait_row = 1 # corresponds to the translocation types\n", "\n", "# For age and gender\n", "# These are not available in the sample characteristics dictionary\n", "age_row = None\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value: str) -> Optional[int]:\n", " \"\"\"\n", " Convert translocation types to binary for glucocorticoid sensitivity.\n", " \n", " Based on the background information, MLL translocations are associated with \n", " poorer response to glucocorticoids, so we'll use this as the binary indicator.\n", " 0 = TEL_AML1 or E2A_PBX1 (better glucocorticoid response)\n", " 1 = MLL (worse glucocorticoid response)\n", " \"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " translocation = value.split(':', 1)[1].strip()\n", " \n", " if translocation == 'MLL':\n", " return 1 # Less sensitive to glucocorticoids\n", " elif translocation in ['TEL_AML1', 'E2A_PBX1']:\n", " return 0 # More sensitive to glucocorticoids\n", " else:\n", " return None\n", "\n", "def convert_age(value: str) -> Optional[float]:\n", " \"\"\"\n", " Placeholder function for age conversion (not used as age data is not available).\n", " \"\"\"\n", " return None\n", "\n", "def convert_gender(value: str) -> Optional[int]:\n", " \"\"\"\n", " Placeholder function for gender conversion (not used as gender data is not available).\n", " \"\"\"\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Save initial metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Assuming the clinical data is stored somewhere and accessible\n", " # We'll create a properly formatted DataFrame based on the sample characteristics\n", " \n", " # First, create columns for samples\n", " sample_chars = {0: ['sample_type: bone marrow'], 1: ['translocation: TEL_AML1', 'translocation: E2A_PBX1', 'translocation: MLL']}\n", " \n", " # The format expected by geo_select_clinical_features seems to be:\n", " # - Rows represent different characteristics (like sample_type, translocation)\n", " # - Columns represent different samples\n", " \n", " # Create a DataFrame with sample names as columns\n", " num_samples = max(len(values) for values in sample_chars.values())\n", " sample_columns = [f'Sample_{i+1}' for i in range(num_samples)]\n", " \n", " clinical_data = pd.DataFrame(index=sample_chars.keys(), columns=sample_columns)\n", " \n", " # Fill in the data\n", " for row_idx, values in sample_chars.items():\n", " for sample_idx, value in enumerate(values):\n", " if sample_idx < len(sample_columns):\n", " clinical_data.iloc[row_idx, sample_idx] = value\n", " \n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the DataFrame\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "6c58f751", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "073b89df", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "2f35137e", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "a69a6e93", "metadata": {}, "outputs": [], "source": [ "# Based on the gene identifiers shown in the sample data, these appear to be Agilent microarray\n", "# probe IDs (starting with A_19_P) mixed with control probes. These are not standard human\n", "# gene symbols and will require mapping to convert to gene symbols.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "91f53c57", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "bc1a9b22", "metadata": {}, "outputs": [], "source": [ "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n", "import gzip\n", "\n", "# Look at the first few lines of the SOFT file to understand its structure\n", "print(\"Examining SOFT file structure:\")\n", "try:\n", " with gzip.open(soft_file, 'rt') as file:\n", " # Read first 20 lines to understand the file structure\n", " for i, line in enumerate(file):\n", " if i < 20:\n", " print(f\"Line {i}: {line.strip()}\")\n", " else:\n", " break\n", "except Exception as e:\n", " print(f\"Error reading SOFT file: {e}\")\n", "\n", "# 2. Now let's try a more robust approach to extract the gene annotation\n", "# Instead of using the library function which failed, we'll implement a custom approach\n", "try:\n", " # First, look for the platform section which contains gene annotation\n", " platform_data = []\n", " with gzip.open(soft_file, 'rt') as file:\n", " in_platform_section = False\n", " for line in file:\n", " if line.startswith('^PLATFORM'):\n", " in_platform_section = True\n", " continue\n", " if in_platform_section and line.startswith('!platform_table_begin'):\n", " # Next line should be the header\n", " header = next(file).strip()\n", " platform_data.append(header)\n", " # Read until the end of the platform table\n", " for table_line in file:\n", " if table_line.startswith('!platform_table_end'):\n", " break\n", " platform_data.append(table_line.strip())\n", " break\n", " \n", " # If we found platform data, convert it to a DataFrame\n", " if platform_data:\n", " import pandas as pd\n", " import io\n", " platform_text = '\\n'.join(platform_data)\n", " gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n", " low_memory=False, on_bad_lines='skip')\n", " print(\"\\nGene annotation preview:\")\n", " print(preview_df(gene_annotation))\n", " else:\n", " print(\"Could not find platform table in SOFT file\")\n", " \n", " # Try an alternative approach - extract mapping from other sections\n", " with gzip.open(soft_file, 'rt') as file:\n", " for line in file:\n", " if 'ANNOTATION information' in line or 'annotation information' in line:\n", " print(f\"Found annotation information: {line.strip()}\")\n", " if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n", " print(f\"Platform title: {line.strip()}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing gene annotation: {e}\")\n" ] }, { "cell_type": "markdown", "id": "8feaf095", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "277d2520", "metadata": {}, "outputs": [], "source": [ "# 1. Determine which keys to use for mapping\n", "# From the outputs, we can see:\n", "# - The gene expression data uses 'ID' as identifiers\n", "# - In the annotation dataframe, 'ID' corresponds to probe IDs and 'GENE_SYMBOL' contains gene symbols\n", "\n", "# 2. Get gene mapping dataframe\n", "gene_mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')\n", "\n", "# 3. Apply gene mapping to convert probe-level measurements to gene expression\n", "# First, let's check if there are any rows in the mapping dataframe\n", "print(f\"Number of rows in mapping dataframe: {len(gene_mapping_df)}\")\n", "print(f\"Sample of gene mapping data (first 5 rows):\")\n", "print(gene_mapping_df.head())\n", "\n", "# Apply the mapping\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping_df)\n", "\n", "# Check the resulting gene expression data\n", "print(f\"\\nNumber of genes after mapping: {len(gene_data)}\")\n", "print(f\"First few genes:\")\n", "print(gene_data.index[:10])\n", "\n", "# Preview the gene expression data\n", "print(\"\\nPreview of gene expression data:\")\n", "gene_data_preview = preview_df(gene_data)\n", "print(gene_data_preview)\n", "\n", "# Save the gene expression data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "f90226d2", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "de9c24ce", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the obtained gene expression data\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Re-load the clinical data from the SOFT file to extract sample characteristics\n", "print(\"\\nExtracting clinical data from SOFT file...\")\n", "sample_info = {}\n", "\n", "# Read the SOFT file to extract sample information\n", "with gzip.open(soft_file, 'rt') as f:\n", " current_sample = None\n", " for line in f:\n", " # Detect sample sections\n", " if line.startswith('!Sample_geo_accession'):\n", " sample_id = line.split('=')[1].strip()\n", " current_sample = sample_id\n", " sample_info[current_sample] = {}\n", " \n", " # Extract translocation information\n", " if current_sample and 'translocation' in line.lower():\n", " if 'mll' in line.lower() or 'mil' in line.lower():\n", " sample_info[current_sample]['translocation'] = 'MLL'\n", " elif 'tel' in line.lower() and 'aml' in line.lower():\n", " sample_info[current_sample]['translocation'] = 'TEL_AML1'\n", " elif 'e2a' in line.lower() and 'pbx' in line.lower():\n", " sample_info[current_sample]['translocation'] = 'E2A_PBX1'\n", "\n", "print(f\"Found information for {len(sample_info)} samples\")\n", "\n", "# Map samples to trait values based on translocation type\n", "clinical_data = {}\n", "genetic_sample_ids = normalized_gene_data.columns.tolist()\n", "\n", "for sample_id in genetic_sample_ids:\n", " if sample_id in sample_info and 'translocation' in sample_info[sample_id]:\n", " translocation = sample_info[sample_id]['translocation']\n", " if translocation == 'MLL':\n", " clinical_data[sample_id] = 1 # Less sensitive to glucocorticoids\n", " elif translocation in ['TEL_AML1', 'E2A_PBX1']:\n", " clinical_data[sample_id] = 0 # More sensitive to glucocorticoids\n", " else:\n", " clinical_data[sample_id] = None\n", "\n", "# Create clinical dataframe\n", "clinical_df = pd.DataFrame({trait: clinical_data}, index=genetic_sample_ids)\n", "print(f\"Clinical data shape: {clinical_df.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(clinical_df.head())\n", "print(f\"Samples with valid trait values: {clinical_df[trait].notna().sum()}\")\n", "\n", "# Save updated clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Updated clinical data saved to {out_clinical_data_file}\")\n", "\n", "# 3. Link clinical and genetic data\n", "linked_data = pd.concat([clinical_df, normalized_gene_data.T], axis=1)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n", "if linked_data.shape[1] >= 5:\n", " print(linked_data.iloc[:5, :5])\n", "else:\n", " print(linked_data.head())\n", "\n", "# 4. Handle missing values\n", "print(\"\\nMissing values before handling:\")\n", "print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n", "gene_cols = [col for col in linked_data.columns if col != trait]\n", "if gene_cols:\n", " missing_genes_pct = linked_data[gene_cols].isna().mean()\n", " genes_with_high_missing = sum(missing_genes_pct > 0.2)\n", " print(f\" Genes with >20% missing: {genes_with_high_missing}\")\n", " \n", " if len(linked_data) > 0: # Ensure we have samples before checking\n", " missing_per_sample = linked_data[gene_cols].isna().mean(axis=1)\n", " samples_with_high_missing = sum(missing_per_sample > 0.05)\n", " print(f\" Samples with >5% missing genes: {samples_with_high_missing}\")\n", "\n", "# Handle missing values\n", "cleaned_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n", "\n", "# 5. Evaluate bias in trait and demographic features\n", "if len(cleaned_data) > 0:\n", " trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n", "else:\n", " trait_biased = True\n", " print(\"Dataset is empty after handling missing values.\")\n", "\n", "# 6. Final validation and save\n", "note = \"Dataset contains gene expression data from B-ALL patients with different translocations. \"\n", "note += \"Translocation type is used as a proxy for glucocorticoid sensitivity: MLL translocations have poorer \"\n", "note += \"response to glucocorticoids compared to TEL_AML1 or E2A_PBX1 translocations. No demographic features available.\"\n", "\n", "is_gene_available = len(normalized_gene_data) > 0\n", "is_trait_available = len(clinical_df) > 0 and clinical_df[trait].notna().sum() > 0\n", "\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available, \n", " is_biased=trait_biased, \n", " df=cleaned_data,\n", " note=note\n", ")\n", "\n", "# 7. Save if usable\n", "if is_usable and len(cleaned_data) > 0:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " cleaned_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable or empty and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }