{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "bcb53b17", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Acute_Myeloid_Leukemia\"\n", "cohort = \"GSE222169\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Acute_Myeloid_Leukemia\"\n", "in_cohort_dir = \"../../input/GEO/Acute_Myeloid_Leukemia/GSE222169\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/GSE222169.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/gene_data/GSE222169.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Acute_Myeloid_Leukemia/clinical_data/GSE222169.csv\"\n", "json_path = \"../../output/preprocess/Acute_Myeloid_Leukemia/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "5df0c22f", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "1d3c3abe", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "a93884e5", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "b126ed26", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "import os\n", "import json\n", "from typing import Optional, Callable, Dict, Any\n", "\n", "# Examine the background information and sample characteristics\n", "# 1. Gene Expression Data Availability\n", "# Based on the series title \"Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia\"\n", "# and the sample characteristics showing cell lines and patient samples with AML,\n", "# this appears to be gene expression data rather than miRNA or methylation data.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# Checking the sample characteristics dictionary for trait, age, and gender\n", "\n", "# 2.1 Data Availability\n", "\n", "# For trait (AML status)\n", "# Row 0 contains 'cell line: MOLM-14', 'cell line: OCI-AML2', 'tissue source: patient with AML'\n", "# All samples are AML samples (constant), but this is still useful for our trait identification\n", "trait_row = 0 \n", "\n", "# For age\n", "# There's no age information available in the sample characteristics\n", "age_row = None\n", "\n", "# For gender\n", "# There's no gender information available in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion Functions\n", "\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert trait values to binary format.\n", " 1 = AML, 0 = Non-AML\n", " \"\"\"\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract value after colon if it exists\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # All samples appear to be from AML cell lines or patients\n", " if 'AML' in value or 'leukemia' in value.lower():\n", " return 1\n", " return None # Return None for uncertain cases\n", "\n", "def convert_age(value):\n", " \"\"\"\n", " Convert age values to continuous format.\n", " This function is not used since age data is not available.\n", " \"\"\"\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"\n", " Convert gender values to binary format: 0 = female, 1 = male\n", " This function is not used since gender data is not available.\n", " \"\"\"\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "# Trait data is available since trait_row is not None\n", "is_trait_available = trait_row is not None\n", "\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# Since trait_row is not None, we need to extract clinical features\n", "if trait_row is not None:\n", " try:\n", " # Create a DataFrame from the sample characteristics dictionary provided in previous output\n", " sample_chars = {\n", " 0: ['cell line: MOLM-14', 'cell line: OCI-AML2', 'tissue source: patient with AML'],\n", " 1: ['cell type: leukemia cell line', 'genotype: OE_EMPTY', 'genotype: OE_MFN2', 'genotype: shCTL', 'genotype: shMFN2', 'genotype: shOPA1'],\n", " 2: ['treatment: shCTL_72h', 'treatment: shMFN2_72h', None]\n", " }\n", " \n", " # Convert the dictionary to a DataFrame format compatible with geo_select_clinical_features\n", " # First, create a list of all unique sample IDs from all rows\n", " all_samples = []\n", " for row, values in sample_chars.items():\n", " for val in values:\n", " if val is not None and not pd.isna(val):\n", " all_samples.append(val)\n", " \n", " # Create a DataFrame with samples as columns\n", " clinical_data = pd.DataFrame(index=range(len(sample_chars)), columns=all_samples)\n", " \n", " # Fill the DataFrame with sample values\n", " for row, values in sample_chars.items():\n", " for val in values:\n", " if val is not None and not pd.isna(val):\n", " clinical_data.loc[row, val] = val\n", " \n", " # Extract clinical features\n", " selected_clinical = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(selected_clinical)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the extracted clinical features\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical.to_csv(out_clinical_data_file)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n", " except Exception as e:\n", " print(f\"Error extracting clinical features: {e}\")\n", " print(\"Clinical data extraction was skipped due to an error.\")\n" ] }, { "cell_type": "markdown", "id": "bee581ea", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "00c67a80", "metadata": {}, "outputs": [], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "f08756d0", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "b909498b", "metadata": {}, "outputs": [], "source": [ "# These identifiers (\"TC0100006437.hg.1\", etc.) are not standard human gene symbols\n", "# They appear to be probe IDs from a microarray platform, likely Affymetrix or Thermo Fisher\n", "# These need to be mapped to standard gene symbols for biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "c6aba98f", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "ccd3c00a", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "1d94bbf3", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "d9a5b416", "metadata": {}, "outputs": [], "source": [ "# Looking at the gene annotation dictionary and the gene identifiers in the expression data\n", "# The 'ID' column in gene_annotation matches the index in gene_data (e.g., \"TC0100006437.hg.1\")\n", "# The gene symbols need to be extracted from the 'SPOT_ID.1' column which contains detailed annotation information\n", "\n", "# 1. Determine the columns for mapping\n", "prob_col = 'ID' # This column contains the probe IDs matching our gene expression data\n", "gene_col = 'SPOT_ID.1' # This column contains gene information including symbols\n", "\n", "# 2. Get the gene mapping dataframe\n", "mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "# 3. Apply gene mapping to convert probe measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Preview the first few rows of the gene expression data after mapping\n", "print(\"Preview of gene expression data after mapping:\")\n", "print(gene_data.head())\n", "print(\"Number of genes in the mapped data:\", len(gene_data))\n" ] }, { "cell_type": "markdown", "id": "18de0822", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "612808c0", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Analyze the clinical data structure more carefully\n", "print(\"Clinical data shape:\", clinical_data.shape)\n", "print(\"Clinical data columns:\", clinical_data.columns)\n", "print(\"Clinical data index:\", clinical_data.index)\n", "\n", "# Examine the first few rows to understand the data structure\n", "print(\"First few rows of clinical data:\")\n", "print(clinical_data.iloc[:, :5].head()) # Show only first 5 columns for brevity\n", "\n", "# Extract relevant information for creating a more appropriate clinical feature dataframe\n", "# Based on the GSE series information, this dataset is about mitochondrial fusion in AML\n", "# We'll create a new clinical data approach by directly processing column names\n", "\n", "# Get sample IDs from the gene expression data\n", "sample_ids = normalized_gene_data.columns.tolist()\n", "\n", "# Create a trait dataframe using the GSM IDs as sample identifiers\n", "# Since we're interested in MFN2 treatment effects, we'll use column names that contain relevant identifiers\n", "trait_values = []\n", "for sample_id in sample_ids:\n", " # Default to None\n", " trait_value = None\n", " \n", " # Check if the sample ID is in clinical_data columns\n", " if sample_id in clinical_data.columns:\n", " # Look at the treatment row (index 2)\n", " cell_value = clinical_data.loc[2, sample_id]\n", " if isinstance(cell_value, str):\n", " if 'shMFN2' in cell_value:\n", " trait_value = 1\n", " elif 'shCTL' in cell_value:\n", " trait_value = 0\n", " \n", " trait_values.append(trait_value)\n", "\n", "# Create a DataFrame with the trait values\n", "trait_df = pd.DataFrame({trait: trait_values}, index=sample_ids)\n", "print(\"Trait dataframe preview:\")\n", "print(trait_df.head())\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "trait_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link the clinical and genetic data\n", "linked_data = pd.concat([trait_df.T, normalized_gene_data], axis=0)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", "# Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# If we still have data after handling missing values\n", "if linked_data.shape[0] > 0:\n", " # Determine whether the trait and some demographic features are severely biased\n", " is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", " # Conduct quality check and save the cohort information\n", " note = \"Dataset contains AML cell lines with different treatments. Trait was defined as shMFN2 knockdown (1) vs shCTL control (0).\"\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=note\n", " )\n", "\n", " # If the linked data is usable, save it\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Processed dataset saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset not usable due to bias in trait distribution. Data not saved.\")\n", "else:\n", " # Record that this dataset is not usable due to insufficient trait data\n", " validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=False,\n", " is_biased=None,\n", " df=pd.DataFrame(),\n", " note=\"No samples with valid trait values remained after filtering\"\n", " )\n", " print(\"Dataset marked as not usable due to insufficient trait data after filtering.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }