{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "baa6ec5b", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Crohns_Disease\"\n", "cohort = \"GSE66407\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Crohns_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Crohns_Disease/GSE66407\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Crohns_Disease/GSE66407.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Crohns_Disease/gene_data/GSE66407.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Crohns_Disease/clinical_data/GSE66407.csv\"\n", "json_path = \"../../output/preprocess/Crohns_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "78122d19", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "badbdfd4", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "69899cd0", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "2f263e62", "metadata": {}, "outputs": [], "source": [ "# Analysis of dataset to determine gene expression data availability and clinical feature extraction\n", "import pandas as pd\n", "\n", "# 1. Gene Expression Data Availability \n", "# Based on the background information, this dataset contains gut biopsies with transcriptome analysis\n", "# This indicates gene expression data, not just miRNA or methylation\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# Trait (Crohn's Disease) - From key 3 \"diagnosis: CD\"\n", "trait_row = 3\n", "\n", "# Age - From key 2 \"age: XX\"\n", "age_row = 2\n", "\n", "# Gender - Not available in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"Convert diagnosis information to binary trait value (0: Control, 1: CD).\"\"\"\n", " if pd.isna(value):\n", " return None\n", " \n", " # Split by colon and get the value\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " if value == 'CD':\n", " return 1 # Has Crohn's Disease\n", " elif value == 'Control':\n", " return 0 # Control/Healthy\n", " else:\n", " return None # UC or other diagnoses\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age information to continuous value.\"\"\"\n", " if pd.isna(value):\n", " return None\n", " \n", " # Split by colon and get the value\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Placeholder function for gender conversion, though gender data is not available.\"\"\"\n", " return None\n", "\n", "# 3. Save Metadata - initial filtering\n", "# trait_row is not None, so trait data is available\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=(trait_row is not None)\n", ")\n", "\n", "# 4. Clinical Feature Extraction (since trait_row is not None)\n", "# Use a safer approach to parse the sample characteristics dictionary from the previous output\n", "sample_char_dict = {0: ['patient: 10', 'patient: 53', 'patient: 22', 'patient: 91', 'patient: 23', 'patient: 96', 'patient: 50', 'patient: 9', 'patient: 25', 'patient: 97', 'patient: 12', 'patient: 52', 'patient: 101', 'patient: 29', 'patient: 51', 'patient: 107', 'patient: 43', 'patient: 11', 'patient: 109', 'patient: 40', 'patient: 113', 'patient: 116', 'patient: 39', 'patient: 120', 'patient: 34', 'patient: 48', 'patient: 59', 'patient: 65', 'patient: 99', 'patient: 28'], \n", " 1: ['biopsy: 2', 'biopsy: 3', 'biopsy: 6', 'biopsy: 5', 'biopsy: 1', 'biopsy: 4', 'biopsy: 7', 'biopsy: 8', 'biopsy: G1', 'biopsy: 9', 'biopsy: 1A', 'biopsy: 1B'], \n", " 2: ['age: 37', 'age: 18', 'age: 19', 'age: 54', 'age: 70', 'age: 22', 'age: 45', 'age: 62', 'age: 31', 'age: 39', 'age: 67', 'age: 24', 'age: 59', 'age: 20', 'age: 77', 'age: 68', 'age: 41', 'age: 50', 'age: 35', 'age: 36', 'age: 43', 'age: 52', 'age: 21', 'age: 63', 'age: 29', 'age: 25', 'age: 26', 'age: 28', 'age: 53', 'age: 69'], \n", " 3: ['diagnosis: Control', 'diagnosis: CD', 'diagnosis: UC', None, 'inflammation: non', 'inflammation: yes'], \n", " 4: ['gastroscopy: FALSE', 'gastroscopy: TRUE', None, 'tissue: transversum', 'tissue: sigmoideum'], \n", " 5: ['inflammation: non', 'inflammation: yes', None, 'tissue: descendens', 'tissue: sigmoideum', 'tissue: rectum'], \n", " 6: ['tissue: ascendens', 'tissue: sigmoideum', 'tissue: ileum', 'tissue: rectum', 'tissue: descendens', 'tissue: transversum', 'tissue: coecum', None, 'tissue: bulbus durodenum', 'tissue: valvula']}\n", "\n", "# Create clinical data DataFrame properly\n", "# We need to account for the fact that each list in the dictionary may have different lengths\n", "# Find the maximum length\n", "max_length = max(len(values) for values in sample_char_dict.values())\n", "\n", "# Pad shorter lists with NaN\n", "padded_dict = {}\n", "for key, values in sample_char_dict.items():\n", " padded_values = values + [None] * (max_length - len(values))\n", " padded_dict[key] = padded_values\n", "\n", "# Create DataFrame from padded dictionary\n", "clinical_data = pd.DataFrame(padded_dict)\n", "\n", "# Extract clinical features\n", "clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# Preview clinical features\n", "preview_clinical = preview_df(clinical_features)\n", "print(\"Preview of extracted clinical features:\")\n", "print(preview_clinical)\n", "\n", "# Save clinical features to CSV\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Clinical features saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "e97fadc0", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "c1012839", "metadata": {}, "outputs": [], "source": [ "# 1. Re-identify the SOFT and matrix files to ensure we have the correct paths\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Extract the gene expression data from the matrix file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers)\n", "print(\"\\nFirst 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n", "\n", "# 4. Print the dimensions of the gene expression data\n", "print(f\"\\nGene data dimensions: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# Note: we keep is_gene_available as True since we successfully extracted gene expression data\n", "is_gene_available = True\n" ] }, { "cell_type": "markdown", "id": "d07b021e", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "b0344dfb", "metadata": {}, "outputs": [], "source": [ "# Looking at the gene identifiers provided, they appear to be Ensembl gene IDs with an \"_at\" suffix\n", "# Ensembl IDs typically start with \"ENSG\" for human genes, followed by a unique number\n", "# These are not standard human gene symbols (like BRCA1, TP53, etc.)\n", "# Therefore, they need to be mapped to standard gene symbols for better interpretability\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "a6d337dc", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "1ddbc0d3", "metadata": {}, "outputs": [], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "d5e080bc", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "50003d42", "metadata": {}, "outputs": [], "source": [ "# 1. Looking at the gene annotation preview, we need to extract gene symbols from 'Description'\n", "# Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:11858]\" should yield \"TSPAN6\"\n", "\n", "# Let's check the Description field format\n", "print(\"\\nSample Description fields:\")\n", "print(gene_annotation['Description'].head(10).tolist())\n", "\n", "# Create a function to extract gene symbols from the Description field\n", "def extract_gene_name(description):\n", " \"\"\"Extract gene name from the description field - everything before [Source: part\"\"\"\n", " if pd.isna(description):\n", " return None\n", " \n", " # Extract the gene name - everything before [Source: part\n", " if '[Source:' in description:\n", " gene_name = description.split('[Source:')[0].strip()\n", " return gene_name\n", " \n", " return None\n", "\n", "# Apply the function to extract gene names\n", "gene_annotation['Gene_Name'] = gene_annotation['Description'].apply(extract_gene_name)\n", "\n", "# Print some examples to verify extraction\n", "print(\"\\nSample Gene Name extractions:\")\n", "sample_extractions = gene_annotation[['ID', 'Description', 'Gene_Name']].head(10)\n", "print(sample_extractions)\n", "\n", "# Use extract_human_gene_symbols to get likely gene symbols from the gene names\n", "gene_annotation['Symbol'] = gene_annotation['Gene_Name'].apply(extract_human_gene_symbols)\n", "\n", "# Check which rows have symbols\n", "has_symbols = gene_annotation['Symbol'].apply(lambda x: len(x) > 0 if isinstance(x, list) else False)\n", "print(f\"\\nRows with extracted symbols: {has_symbols.sum()} out of {len(gene_annotation)}\")\n", "\n", "# Create an exploded dataframe for mapping\n", "mapping_df = gene_annotation[['ID', 'Symbol']].copy()\n", "# Convert empty lists to None to make dropna work correctly\n", "mapping_df.loc[mapping_df['Symbol'].apply(lambda x: isinstance(x, list) and len(x) == 0), 'Symbol'] = None\n", "# Explode the Symbol column to handle cases where multiple symbols were extracted\n", "mapping_df = mapping_df.explode('Symbol')\n", "mapping_df = mapping_df.dropna(subset=['Symbol'])\n", "mapping_df = mapping_df.rename(columns={'Symbol': 'Gene'})\n", "\n", "# Print the shape of the mapping dataframe\n", "print(f\"\\nMapping dataframe shape: {mapping_df.shape}\")\n", "print(\"\\nSample mappings:\")\n", "print(mapping_df.head(10))\n", "\n", "# Apply the mapping to convert probe-level data to gene expression data\n", "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Print the shape of the resulting gene expression data\n", "print(f\"\\nAfter mapping, gene data dimensions: {gene_data_mapped.shape[0]} genes × {gene_data_mapped.shape[1]} samples\")\n", "\n", "# Preview the first few gene symbols\n", "if gene_data_mapped.shape[0] > 0:\n", " print(\"\\nFirst few gene symbols after mapping:\")\n", " print(gene_data_mapped.index[:10])\n", "else:\n", " print(\"\\nWarning: No genes were mapped. Check mapping process.\")\n", "\n", "# Save the gene expression data\n", "gene_data_mapped.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n", "\n", "# Update the gene_data variable for subsequent steps\n", "gene_data = gene_data_mapped\n" ] }, { "cell_type": "markdown", "id": "6fe8af0e", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "9980d133", "metadata": {}, "outputs": [], "source": [ "# 1. Re-extract clinical data from the SOFT file to ensure we have properly structured data\n", "print(\"Re-extracting clinical data from the SOFT file...\")\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# Get raw clinical data\n", "background_info, clinical_df = get_background_and_clinical_data(matrix_file)\n", "\n", "# Transpose the clinical data to have samples as columns\n", "clinical_df_t = clinical_df.T\n", "# First row contains the geo accessions, use it as column names\n", "clinical_df_t.columns = clinical_df_t.iloc[0]\n", "# Remove the first row that has been used as column names\n", "clinical_df_t = clinical_df_t.iloc[1:]\n", "\n", "# Now extract relevant clinical features (for Crohn's Disease and age)\n", "trait_values = []\n", "if trait_row is not None:\n", " for col in clinical_df_t.columns:\n", " trait_val = convert_trait(clinical_df_t.iloc[trait_row-1, col]) # Adjust index for 0-based\n", " trait_values.append(trait_val)\n", "\n", "age_values = []\n", "if age_row is not None:\n", " for col in clinical_df_t.columns:\n", " age_val = convert_age(clinical_df_t.iloc[age_row-1, col]) # Adjust index for 0-based\n", " age_values.append(age_val)\n", "\n", "# Create proper clinical features dataframe with samples as rows\n", "sample_ids = clinical_df_t.columns.tolist()\n", "clinical_features = pd.DataFrame()\n", "\n", "if trait_values:\n", " clinical_features[trait] = trait_values\n", "if age_values:\n", " clinical_features['Age'] = age_values\n", "\n", "# Set index to sample IDs\n", "clinical_features.index = sample_ids\n", "print(f\"Re-extracted clinical features shape: {clinical_features.shape}\")\n", "print(\"Clinical features preview:\")\n", "print(clinical_features.head())\n", "\n", "# Save the improved clinical features\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Improved clinical features saved to {out_clinical_data_file}\")\n", "\n", "# Check if clinical features were successfully extracted with non-null values\n", "if clinical_features.empty or clinical_features[trait].isnull().all():\n", " print(\"Failed to extract valid clinical features with trait values. Dataset cannot be processed further.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Valid clinical features with trait values could not be extracted.\"\n", " )\n", "else:\n", " # 2. Link clinical and genetic data\n", " print(\"Linking clinical and genetic data...\")\n", " \n", " # Transpose gene_data to have samples as rows and genes as columns\n", " gene_data_t = gene_data.T\n", " \n", " # Keep only common samples between clinical and gene data\n", " common_samples = list(set(clinical_features.index) & set(gene_data_t.index))\n", " print(f\"Common samples between clinical and gene data: {len(common_samples)}\")\n", " \n", " if len(common_samples) == 0:\n", " print(\"No common samples between clinical and gene data. Dataset cannot be processed further.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"No common samples between clinical and gene data.\"\n", " )\n", " else:\n", " # Filter both datasets to only include common samples\n", " clinical_common = clinical_features.loc[common_samples]\n", " gene_data_common = gene_data_t.loc[common_samples]\n", " \n", " # Merge the datasets\n", " linked_data = pd.concat([clinical_common, gene_data_common], axis=1)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", " \n", " # 3. Handle missing values systematically\n", " linked_data = handle_missing_values(linked_data, trait_col=trait)\n", " print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", " \n", " # Check if there are still samples after missing value handling\n", " if linked_data.shape[0] == 0:\n", " print(\"Error: No samples remain after handling missing values.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"All samples were removed during missing value handling.\"\n", " )\n", " else:\n", " # 4. Check if the dataset is biased\n", " print(\"\\nChecking for bias in feature variables:\")\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", " \n", " # 5. Conduct final quality validation\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression data for Crohn's Disease.\"\n", " )\n", " \n", " # 6. Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")\n" ] }, { "cell_type": "markdown", "id": "1b21d50f", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "79d61edb", "metadata": {}, "outputs": [], "source": [ "# 1. Skip gene symbol normalization and use the accession numbers directly\n", "print(\"Processing gene expression data...\")\n", "# Don't normalize - these are GenBank accessions, not gene symbols\n", "gene_data_normalized = gene_data # Use the original gene data with accession numbers\n", "\n", "# Save the gene data (without normalization)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n", "print(f\"Gene data shape: {gene_data.shape[0]} genes × {gene_data.shape[1]} samples\")\n", "\n", "# 2. Extract clinical features from scratch\n", "print(\"Extracting clinical features from original clinical data...\")\n", "clinical_features = geo_select_clinical_features(\n", " clinical_data, \n", " trait, \n", " trait_row,\n", " convert_trait,\n", " age_row,\n", " convert_age,\n", " gender_row,\n", " convert_gender\n", ")\n", "\n", "# Save the extracted clinical features\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Clinical features saved to {out_clinical_data_file}\")\n", "\n", "print(\"Clinical features preview:\")\n", "print(preview_df(clinical_features))\n", "\n", "# Check if clinical features were successfully extracted\n", "if clinical_features.empty:\n", " print(\"Failed to extract clinical features. Dataset cannot be processed further.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=False,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"Clinical features could not be extracted from the dataset.\"\n", " )\n", " print(\"Dataset deemed not usable due to lack of clinical features.\")\n", "else:\n", " # 2. Link clinical and genetic data\n", " print(\"Linking clinical and genetic data...\")\n", " linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)\n", " print(f\"Linked data shape: {linked_data.shape}\")\n", "\n", " # Check if the linked data has gene features\n", " if linked_data.shape[1] <= 1:\n", " print(\"Error: Linked data has no gene features. Dataset cannot be processed further.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=False,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=linked_data,\n", " note=\"Failed to link gene expression data with clinical features.\"\n", " )\n", " else:\n", " # 3. Handle missing values systematically\n", " linked_data = handle_missing_values(linked_data, trait_col=trait)\n", " print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", " \n", " # Check if there are still samples after missing value handling\n", " if linked_data.shape[0] == 0:\n", " print(\"Error: No samples remain after handling missing values.\")\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=True,\n", " df=pd.DataFrame(),\n", " note=\"All samples were removed during missing value handling.\"\n", " )\n", " else:\n", " # 4. Check if the dataset is biased\n", " print(\"\\nChecking for bias in feature variables:\")\n", " is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", " # 5. Conduct final quality validation\n", " is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression data for Crohn's Disease patients and healthy controls.\"\n", " )\n", "\n", " # 6. Save linked data if usable\n", " if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", " else:\n", " print(\"Dataset deemed not usable for trait association studies, linked data not saved.\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }