{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "0e768699", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.211454Z", "iopub.status.busy": "2025-03-25T06:02:07.210925Z", "iopub.status.idle": "2025-03-25T06:02:07.374571Z", "shell.execute_reply": "2025-03-25T06:02:07.374264Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Osteoporosis\"\n", "cohort = \"GSE84500\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Osteoporosis\"\n", "in_cohort_dir = \"../../input/GEO/Osteoporosis/GSE84500\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Osteoporosis/GSE84500.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Osteoporosis/gene_data/GSE84500.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Osteoporosis/clinical_data/GSE84500.csv\"\n", "json_path = \"../../output/preprocess/Osteoporosis/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "f768503f", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "1da871d2", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.375961Z", "iopub.status.busy": "2025-03-25T06:02:07.375828Z", "iopub.status.idle": "2025-03-25T06:02:07.577604Z", "shell.execute_reply": "2025-03-25T06:02:07.577330Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"TGFbeta-induced switch from adipogenic to osteogenic differentiation of human mesenchymal stem cells\"\n", "!Series_summary\t\"Gene Expression analysis of a differentiation timeseries of human Mesenchymal Stem Cells (hMSCs) in the presence of adipogenic/osteogenic factors. hMSCs differentiate into fat cells when treated with dexamethasone (10^-6 M), insulin (10 ug/ml), rosiglitazone (10^-7 M) and IBMX (250 uM). TGFbeta (5 ng/ml) inhibits this process and redirects these cells to differentiate into bone cells.\"\n", "!Series_summary\t\"Introduction: Patients suffering from osteoporosis show an increased number of adipocytes in their bone marrow, concomitant with a reduction in the pool of human mesenchymal stem cells (hMSCs) that are able to differentiate into osteoblasts, thus leading to suppressed osteogenesis.\"\n", "!Series_summary\t\"Methods: In order be able to interfere with this process, we have investigated in vitro culture conditions whereby adipogenic differentiation of hMSCs is impaired and osteogenic differentiation is promoted. By means of gene expression microarray analysis, we have investigated genes which are potential targets for prevention of fat cell differentiation.\"\n", "!Series_summary\t\"Results: Our data show that BMP2 promotes both adipogenic and osteogenic differentiation of hMSCs, while TGFβ inhibits differentiation into both lineages. However, when cells are cultured under adipogenic differentiation conditions, which contains cAMP-enhancing agents such as IBMX of PGE2, TGFβ promotes osteogenic differentiation, while at the same time inhibiting adipogenic differentiation. Gene expression and immunoblot analysis indicated that cAMP-induced suppression of HDAC5 levels plays an important role in the inhibitory effect of TGFβ on osteogenic differentiation. By means of gene expression microarray analysis, we have investigated genes which are downregulated by TGFβ under adipogenic differentiation conditions and may therefore be potential targets for prevention of fat cell differentiation. We thus identified 9 genes for which FDA-approved drugs are available. Our results show that drugs directed against the nuclear hormone receptor PPARG, the metalloproteinase ADAMTS5 and the aldo-keto reductase AKR1B10 inhibit adipogenic differentiation in a dose-dependent manner, although in contrast to TGFβ they do not appear to promote osteogenic differentiation.\"\n", "!Series_summary\t\"Conclusions: The approach chosen in this study has resulted in the identification of new targets for inhibition of fat cell differentiation, which may not only be relevant for prevention of osteoporosis, but also of obesity.\"\n", "!Series_overall_design\t\"hMSCs were induced to differentiate in the presence dexamethasone, insulin and rosiglitazone, to which was added either 50 ng/ml BMP2; BMP2 + TGFbeta; BMP2 + IBMX; BMP2 + TGFbeta + IBMX.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['cell type: hMSC'], 1: ['time: day0', 'time: day1', 'time: day2', 'time: day3', 'time: day7'], 2: ['treatment: none', 'treatment: BMP2', 'treatment: BMP2+TGFB', 'treatment: BMP2+IBMX', 'treatment: BMP2+TGFB+IBMX']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "8f548cc0", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "291d41e1", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.578852Z", "iopub.status.busy": "2025-03-25T06:02:07.578747Z", "iopub.status.idle": "2025-03-25T06:02:07.586369Z", "shell.execute_reply": "2025-03-25T06:02:07.586119Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical Features Preview:\n", "{'GSM2238538': [0.0], 'GSM2238539': [0.0], 'GSM2238540': [0.0], 'GSM2238541': [0.0], 'GSM2238542': [0.0], 'GSM2238543': [0.0], 'GSM2238544': [0.0], 'GSM2238545': [0.0], 'GSM2238546': [0.0], 'GSM2238547': [0.0], 'GSM2238548': [0.0], 'GSM2238549': [0.0], 'GSM2238550': [0.0], 'GSM2238551': [0.0], 'GSM2238552': [0.0], 'GSM2238553': [1.0], 'GSM2238554': [1.0], 'GSM2238555': [1.0], 'GSM2238556': [0.0], 'GSM2238557': [0.0], 'GSM2238558': [0.0], 'GSM2238559': [0.0], 'GSM2238560': [0.0], 'GSM2238561': [0.0], 'GSM2238562': [0.0], 'GSM2238563': [0.0], 'GSM2238564': [0.0], 'GSM2238565': [1.0], 'GSM2238566': [1.0], 'GSM2238567': [1.0], 'GSM2238568': [0.0], 'GSM2238569': [0.0], 'GSM2238570': [0.0], 'GSM2238571': [0.0], 'GSM2238572': [0.0], 'GSM2238573': [0.0], 'GSM2238574': [0.0], 'GSM2238575': [0.0], 'GSM2238576': [0.0], 'GSM2238577': [1.0], 'GSM2238578': [1.0], 'GSM2238579': [1.0], 'GSM2238580': [0.0], 'GSM2238581': [0.0], 'GSM2238582': [0.0], 'GSM2238583': [0.0], 'GSM2238584': [0.0], 'GSM2238585': [0.0], 'GSM2238586': [0.0], 'GSM2238587': [0.0], 'GSM2238588': [0.0], 'GSM2238589': [1.0], 'GSM2238590': [1.0], 'GSM2238591': [1.0]}\n", "Clinical data saved to ../../output/preprocess/Osteoporosis/clinical_data/GSE84500.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this dataset contains gene expression data\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "\n", "# 2.1 Data Availability\n", "# Examining the sample characteristics dictionary to find relevant keys for each variable\n", "\n", "# For trait (Osteoporosis):\n", "# The dataset doesn't directly label samples as having osteoporosis or not,\n", "# but we can infer from the experiment design that this is about differentiation conditions\n", "# related to osteoporosis prevention. The treatment conditions (key 2) can be used.\n", "trait_row = 2\n", "\n", "# For age:\n", "# No age information is available in the sample characteristics\n", "age_row = None\n", "\n", "# For gender:\n", "# No gender information is available in the sample characteristics\n", "gender_row = None\n", "\n", "# 2.2 Data Type Conversion\n", "def convert_trait(value):\n", " \"\"\"\n", " Convert treatment conditions to binary values representing osteogenic vs adipogenic differentiation.\n", " In the context of osteoporosis research, we consider treatments that promote osteogenic differentiation\n", " as the positive case (1) and those that don't as the negative case (0).\n", " \"\"\"\n", " if isinstance(value, str) and \":\" in value:\n", " treatment = value.split(\":\", 1)[1].strip().lower()\n", " # Based on the background info, TGFbeta inhibits adipogenic differentiation and redirects to osteogenic differentiation\n", " # when combined with adipogenic factors like IBMX\n", " if \"tgfb\" in treatment and \"ibmx\" in treatment:\n", " return 1 # Osteogenic differentiation (TGFbeta + IBMX promotes osteogenic)\n", " else:\n", " return 0 # Not specifically promoting osteogenic differentiation\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"\n", " Convert age values to numeric (continuous) format.\n", " Not used in this dataset as age information is not available.\n", " \"\"\"\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"\n", " Convert gender values to binary (0 for female, 1 for male).\n", " Not used in this dataset as gender information is not available.\n", " \"\"\"\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Validate and save cohort info for initial filtering\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "# If trait_row is not None, extract clinical features\n", "if trait_row is not None:\n", " # Load clinical data (assuming it's been previously loaded as clinical_data)\n", " # Extract clinical features using the library function\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " preview = preview_df(clinical_features)\n", " print(\"Clinical Features Preview:\")\n", " print(preview)\n", " \n", " # Save the clinical features to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "c3fd3d47", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "ebcc2427", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.587439Z", "iopub.status.busy": "2025-03-25T06:02:07.587335Z", "iopub.status.idle": "2025-03-25T06:02:07.896827Z", "shell.execute_reply": "2025-03-25T06:02:07.896462Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Index(['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at', '1294_at',\n", " '1316_at', '1320_at', '1405_i_at', '1431_at', '1438_at', '1487_at',\n", " '1494_f_at', '1552256_a_at', '1552257_a_at', '1552258_at', '1552261_at',\n", " '1552263_at', '1552264_a_at', '1552266_at'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined.\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Print the first 20 row IDs (gene or probe identifiers) for future observation.\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "e91c3e61", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "1f793a4c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.898147Z", "iopub.status.busy": "2025-03-25T06:02:07.898033Z", "iopub.status.idle": "2025-03-25T06:02:07.899856Z", "shell.execute_reply": "2025-03-25T06:02:07.899590Z" } }, "outputs": [], "source": [ "# These identifiers appear to be Affymetrix probe IDs (like '1007_s_at') rather than \n", "# standard human gene symbols (which would be like BRCA1, TP53, etc.)\n", "# Affymetrix probe IDs need to be mapped to gene symbols for biological interpretation\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "79e3e839", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "c171249d", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:07.901026Z", "iopub.status.busy": "2025-03-25T06:02:07.900925Z", "iopub.status.idle": "2025-03-25T06:02:12.733715Z", "shell.execute_reply": "2025-03-25T06:02:12.733343Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['1007_s_at', '1053_at', '117_at', '121_at', '1255_g_at'], 'GB_ACC': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'SPOT_ID': [nan, nan, nan, nan, nan], 'Species Scientific Name': ['Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens', 'Homo sapiens'], 'Annotation Date': ['Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014', 'Oct 6, 2014'], 'Sequence Type': ['Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence', 'Exemplar sequence'], 'Sequence Source': ['Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database', 'GenBank', 'Affymetrix Proprietary Database'], 'Target Description': ['U48705 /FEATURE=mRNA /DEFINITION=HSU48705 Human receptor tyrosine kinase DDR gene, complete cds', 'M87338 /FEATURE= /DEFINITION=HUMA1SBU Human replication factor C, 40-kDa subunit (A1) mRNA, complete cds', \"X51757 /FEATURE=cds /DEFINITION=HSP70B Human heat-shock protein HSP70B' gene\", 'X69699 /FEATURE= /DEFINITION=HSPAX8A H.sapiens Pax8 mRNA', 'L36861 /FEATURE=expanded_cds /DEFINITION=HUMGCAPB Homo sapiens guanylate cyclase activating protein (GCAP) gene exons 1-4, complete cds'], 'Representative Public ID': ['U48705', 'M87338', 'X51757', 'X69699', 'L36861'], 'Gene Title': ['discoidin domain receptor tyrosine kinase 1 /// microRNA 4640', 'replication factor C (activator 1) 2, 40kDa', \"heat shock 70kDa protein 6 (HSP70B')\", 'paired box 8', 'guanylate cyclase activator 1A (retina)'], 'Gene Symbol': ['DDR1 /// MIR4640', 'RFC2', 'HSPA6', 'PAX8', 'GUCA1A'], 'ENTREZ_GENE_ID': ['780 /// 100616237', '5982', '3310', '7849', '2978'], 'RefSeq Transcript ID': ['NM_001202521 /// NM_001202522 /// NM_001202523 /// NM_001954 /// NM_013993 /// NM_013994 /// NR_039783 /// XM_005249385 /// XM_005249386 /// XM_005249387 /// XM_005249389 /// XM_005272873 /// XM_005272874 /// XM_005272875 /// XM_005272877 /// XM_005275027 /// XM_005275028 /// XM_005275030 /// XM_005275031 /// XM_005275162 /// XM_005275163 /// XM_005275164 /// XM_005275166 /// XM_005275457 /// XM_005275458 /// XM_005275459 /// XM_005275461 /// XM_006715185 /// XM_006715186 /// XM_006715187 /// XM_006715188 /// XM_006715189 /// XM_006715190 /// XM_006725501 /// XM_006725502 /// XM_006725503 /// XM_006725504 /// XM_006725505 /// XM_006725506 /// XM_006725714 /// XM_006725715 /// XM_006725716 /// XM_006725717 /// XM_006725718 /// XM_006725719 /// XM_006725720 /// XM_006725721 /// XM_006725722 /// XM_006725827 /// XM_006725828 /// XM_006725829 /// XM_006725830 /// XM_006725831 /// XM_006725832 /// XM_006726017 /// XM_006726018 /// XM_006726019 /// XM_006726020 /// XM_006726021 /// XM_006726022 /// XR_427836 /// XR_430858 /// XR_430938 /// XR_430974 /// XR_431015', 'NM_001278791 /// NM_001278792 /// NM_001278793 /// NM_002914 /// NM_181471 /// XM_006716080', 'NM_002155', 'NM_003466 /// NM_013951 /// NM_013952 /// NM_013953 /// NM_013992', 'NM_000409 /// XM_006715073'], 'Gene Ontology Biological Process': ['0001558 // regulation of cell growth // inferred from electronic annotation /// 0001952 // regulation of cell-matrix adhesion // inferred from electronic annotation /// 0006468 // protein phosphorylation // inferred from electronic annotation /// 0007155 // cell adhesion // traceable author statement /// 0007169 // transmembrane receptor protein tyrosine kinase signaling pathway // inferred from electronic annotation /// 0007565 // female pregnancy // inferred from electronic annotation /// 0007566 // embryo implantation // inferred from electronic annotation /// 0007595 // lactation // inferred from electronic annotation /// 0008285 // negative regulation of cell proliferation // inferred from electronic annotation /// 0010715 // regulation of extracellular matrix disassembly // inferred from mutant phenotype /// 0014909 // smooth muscle cell migration // inferred from mutant phenotype /// 0016310 // phosphorylation // inferred from electronic annotation /// 0018108 // peptidyl-tyrosine phosphorylation // inferred from electronic annotation /// 0030198 // extracellular matrix organization // traceable author statement /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from direct assay /// 0038063 // collagen-activated tyrosine kinase receptor signaling pathway // inferred from mutant phenotype /// 0038083 // peptidyl-tyrosine autophosphorylation // inferred from direct assay /// 0043583 // ear development // inferred from electronic annotation /// 0044319 // wound healing, spreading of cells // inferred from mutant phenotype /// 0046777 // protein autophosphorylation // inferred from direct assay /// 0060444 // branching involved in mammary gland duct morphogenesis // inferred from electronic annotation /// 0060749 // mammary gland alveolus development // inferred from electronic annotation /// 0061302 // smooth muscle cell-matrix adhesion // inferred from mutant phenotype', '0000278 // mitotic cell cycle // traceable author statement /// 0000722 // telomere maintenance via recombination // traceable author statement /// 0000723 // telomere maintenance // traceable author statement /// 0006260 // DNA replication // traceable author statement /// 0006271 // DNA strand elongation involved in DNA replication // traceable author statement /// 0006281 // DNA repair // traceable author statement /// 0006283 // transcription-coupled nucleotide-excision repair // traceable author statement /// 0006289 // nucleotide-excision repair // traceable author statement /// 0006297 // nucleotide-excision repair, DNA gap filling // traceable author statement /// 0015979 // photosynthesis // inferred from electronic annotation /// 0015995 // chlorophyll biosynthetic process // inferred from electronic annotation /// 0032201 // telomere maintenance via semi-conservative replication // traceable author statement', '0000902 // cell morphogenesis // inferred from electronic annotation /// 0006200 // ATP catabolic process // inferred from direct assay /// 0006950 // response to stress // inferred from electronic annotation /// 0006986 // response to unfolded protein // traceable author statement /// 0034605 // cellular response to heat // inferred from direct assay /// 0042026 // protein refolding // inferred from direct assay /// 0070370 // cellular heat acclimation // inferred from mutant phenotype', '0001655 // urogenital system development // inferred from sequence or structural similarity /// 0001656 // metanephros development // inferred from electronic annotation /// 0001658 // branching involved in ureteric bud morphogenesis // inferred from expression pattern /// 0001822 // kidney development // inferred from expression pattern /// 0001823 // mesonephros development // inferred from sequence or structural similarity /// 0003337 // mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from expression pattern /// 0006351 // transcription, DNA-templated // inferred from direct assay /// 0006355 // regulation of transcription, DNA-templated // inferred from electronic annotation /// 0007275 // multicellular organismal development // inferred from electronic annotation /// 0007417 // central nervous system development // inferred from expression pattern /// 0009653 // anatomical structure morphogenesis // traceable author statement /// 0030154 // cell differentiation // inferred from electronic annotation /// 0030878 // thyroid gland development // inferred from expression pattern /// 0030878 // thyroid gland development // inferred from mutant phenotype /// 0038194 // thyroid-stimulating hormone signaling pathway // traceable author statement /// 0039003 // pronephric field specification // inferred from sequence or structural similarity /// 0042472 // inner ear morphogenesis // inferred from sequence or structural similarity /// 0042981 // regulation of apoptotic process // inferred from sequence or structural similarity /// 0045893 // positive regulation of transcription, DNA-templated // inferred from direct assay /// 0045893 // positive regulation of transcription, DNA-templated // inferred from sequence or structural similarity /// 0045944 // positive regulation of transcription from RNA polymerase II promoter // inferred from direct assay /// 0048793 // pronephros development // inferred from sequence or structural similarity /// 0071371 // cellular response to gonadotropin stimulus // inferred from direct assay /// 0071599 // otic vesicle development // inferred from expression pattern /// 0072050 // S-shaped body morphogenesis // inferred from electronic annotation /// 0072073 // kidney epithelium development // inferred from electronic annotation /// 0072108 // positive regulation of mesenchymal to epithelial transition involved in metanephros morphogenesis // inferred from sequence or structural similarity /// 0072164 // mesonephric tubule development // inferred from electronic annotation /// 0072207 // metanephric epithelium development // inferred from expression pattern /// 0072221 // metanephric distal convoluted tubule development // inferred from sequence or structural similarity /// 0072278 // metanephric comma-shaped body morphogenesis // inferred from expression pattern /// 0072284 // metanephric S-shaped body morphogenesis // inferred from expression pattern /// 0072289 // metanephric nephron tubule formation // inferred from sequence or structural similarity /// 0072305 // negative regulation of mesenchymal cell apoptotic process involved in metanephric nephron morphogenesis // inferred from sequence or structural similarity /// 0072307 // regulation of metanephric nephron tubule epithelial cell differentiation // inferred from sequence or structural similarity /// 0090190 // positive regulation of branching involved in ureteric bud morphogenesis // inferred from sequence or structural similarity /// 1900212 // negative regulation of mesenchymal cell apoptotic process involved in metanephros development // inferred from sequence or structural similarity /// 1900215 // negative regulation of apoptotic process involved in metanephric collecting duct development // inferred from sequence or structural similarity /// 1900218 // negative regulation of apoptotic process involved in metanephric nephron tubule development // inferred from sequence or structural similarity /// 2000594 // positive regulation of metanephric DCT cell differentiation // inferred from sequence or structural similarity /// 2000611 // positive regulation of thyroid hormone generation // inferred from mutant phenotype /// 2000612 // regulation of thyroid-stimulating hormone secretion // inferred from mutant phenotype', '0007165 // signal transduction // non-traceable author statement /// 0007601 // visual perception // inferred from electronic annotation /// 0007602 // phototransduction // inferred from electronic annotation /// 0007603 // phototransduction, visible light // traceable author statement /// 0016056 // rhodopsin mediated signaling pathway // traceable author statement /// 0022400 // regulation of rhodopsin mediated signaling pathway // traceable author statement /// 0030828 // positive regulation of cGMP biosynthetic process // inferred from electronic annotation /// 0031282 // regulation of guanylate cyclase activity // inferred from electronic annotation /// 0031284 // positive regulation of guanylate cyclase activity // inferred from electronic annotation /// 0050896 // response to stimulus // inferred from electronic annotation'], 'Gene Ontology Cellular Component': ['0005576 // extracellular region // inferred from electronic annotation /// 0005615 // extracellular space // inferred from direct assay /// 0005886 // plasma membrane // traceable author statement /// 0005887 // integral component of plasma membrane // traceable author statement /// 0016020 // membrane // inferred from electronic annotation /// 0016021 // integral component of membrane // inferred from electronic annotation /// 0043235 // receptor complex // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay', '0005634 // nucleus // inferred from electronic annotation /// 0005654 // nucleoplasm // traceable author statement /// 0005663 // DNA replication factor C complex // inferred from direct assay', '0005737 // cytoplasm // inferred from direct assay /// 0005814 // centriole // inferred from direct assay /// 0005829 // cytosol // inferred from direct assay /// 0008180 // COP9 signalosome // inferred from direct assay /// 0070062 // extracellular vesicular exosome // inferred from direct assay /// 0072562 // blood microparticle // inferred from direct assay', '0005634 // nucleus // inferred from direct assay /// 0005654 // nucleoplasm // inferred from sequence or structural similarity /// 0005730 // nucleolus // inferred from direct assay', '0001750 // photoreceptor outer segment // inferred from electronic annotation /// 0001917 // photoreceptor inner segment // inferred from electronic annotation /// 0005578 // proteinaceous extracellular matrix // inferred from electronic annotation /// 0005886 // plasma membrane // inferred from direct assay /// 0016020 // membrane // inferred from electronic annotation /// 0097381 // photoreceptor disc membrane // traceable author statement'], 'Gene Ontology Molecular Function': ['0000166 // nucleotide binding // inferred from electronic annotation /// 0004672 // protein kinase activity // inferred from electronic annotation /// 0004713 // protein tyrosine kinase activity // inferred from electronic annotation /// 0004714 // transmembrane receptor protein tyrosine kinase activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0005518 // collagen binding // inferred from direct assay /// 0005518 // collagen binding // inferred from mutant phenotype /// 0005524 // ATP binding // inferred from electronic annotation /// 0016301 // kinase activity // inferred from electronic annotation /// 0016740 // transferase activity // inferred from electronic annotation /// 0016772 // transferase activity, transferring phosphorus-containing groups // inferred from electronic annotation /// 0038062 // protein tyrosine kinase collagen receptor activity // inferred from direct assay /// 0046872 // metal ion binding // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0003677 // DNA binding // inferred from electronic annotation /// 0005515 // protein binding // inferred from physical interaction /// 0005524 // ATP binding // inferred from electronic annotation /// 0016851 // magnesium chelatase activity // inferred from electronic annotation /// 0017111 // nucleoside-triphosphatase activity // inferred from electronic annotation', '0000166 // nucleotide binding // inferred from electronic annotation /// 0005524 // ATP binding // inferred from electronic annotation /// 0019899 // enzyme binding // inferred from physical interaction /// 0031072 // heat shock protein binding // inferred from physical interaction /// 0042623 // ATPase activity, coupled // inferred from direct assay /// 0051082 // unfolded protein binding // inferred from direct assay', '0000979 // RNA polymerase II core promoter sequence-specific DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from direct assay /// 0003677 // DNA binding // inferred from mutant phenotype /// 0003700 // sequence-specific DNA binding transcription factor activity // inferred from direct assay /// 0004996 // thyroid-stimulating hormone receptor activity // traceable author statement /// 0005515 // protein binding // inferred from physical interaction /// 0044212 // transcription regulatory region DNA binding // inferred from direct assay', '0005509 // calcium ion binding // inferred from electronic annotation /// 0008048 // calcium sensitive guanylate cyclase activator activity // inferred from electronic annotation /// 0030249 // guanylate cyclase regulator activity // inferred from electronic annotation /// 0046872 // metal ion binding // inferred from electronic annotation']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "12605486", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "b3956785", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:12.735063Z", "iopub.status.busy": "2025-03-25T06:02:12.734929Z", "iopub.status.idle": "2025-03-25T06:02:12.994978Z", "shell.execute_reply": "2025-03-25T06:02:12.994603Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 20 gene symbols after mapping:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1', 'A2ML1', 'A2MP1',\n", " 'A4GALT', 'A4GNT', 'AA06', 'AAAS', 'AACS', 'AACSP1', 'AADAC', 'AADACL2',\n", " 'AADACP1', 'AADAT', 'AAED1', 'AAGAB', 'AAK1'],\n", " dtype='object', name='Gene')\n" ] } ], "source": [ "# 1. Based on observation of the gene identifiers and gene annotation data\n", "# The 'ID' column in the gene annotation matches the probe IDs in the gene expression data\n", "# The 'Gene Symbol' column contains the gene symbols we need to map to\n", "prob_col = 'ID'\n", "gene_col = 'Gene Symbol'\n", "\n", "# 2. Get the gene mapping dataframe by extracting the relevant columns\n", "gene_mapping = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, gene_mapping)\n", "\n", "# Print the first few gene symbols to verify the mapping was applied\n", "print(\"First 20 gene symbols after mapping:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "210d6fd9", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "cc8159ff", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:02:12.996328Z", "iopub.status.busy": "2025-03-25T06:02:12.996206Z", "iopub.status.idle": "2025-03-25T06:02:20.475548Z", "shell.execute_reply": "2025-03-25T06:02:20.475173Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Normalized gene data saved to ../../output/preprocess/Osteoporosis/gene_data/GSE84500.csv\n", "Clinical data saved to ../../output/preprocess/Osteoporosis/clinical_data/GSE84500.csv\n", "Linked data shape: (54, 19846)\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "For the feature 'Osteoporosis', the least common label is '1.0' with 12 occurrences. This represents 22.22% of the dataset.\n", "The distribution of the feature 'Osteoporosis' in this dataset is fine.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Linked data saved to ../../output/preprocess/Osteoporosis/GSE84500.csv\n" ] } ], "source": [ "# 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library.\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# Create clinical features directly from clinical_data using the conversion functions defined earlier\n", "clinical_features_df = geo_select_clinical_features(\n", " clinical_data, \n", " trait=trait, \n", " trait_row=trait_row, \n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "# Save the clinical data\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Now link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "\n", "# Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "\n", "# 4. Determine whether the trait and some demographic features are severely biased, and remove biased features.\n", "# Determine whether trait is severely biased\n", "if len(linked_data[trait].unique()) == 2:\n", " is_trait_biased = judge_binary_variable_biased(linked_data, trait)\n", "else:\n", " is_trait_biased = judge_continuous_variable_biased(linked_data, trait)\n", "\n", "# Print whether trait is biased or not\n", "if is_trait_biased:\n", " print(f\"The distribution of the feature \\'{trait}\\' in this dataset is severely biased.\\n\")\n", "else:\n", " print(f\"The distribution of the feature \\'{trait}\\' in this dataset is fine.\\n\")\n", "\n", "# Handle demographic features if they exist\n", "unbiased_linked_data = linked_data.copy()\n", "if \"Age\" in unbiased_linked_data.columns:\n", " age_biased = judge_continuous_variable_biased(unbiased_linked_data, 'Age')\n", " if age_biased:\n", " print(f\"The distribution of the feature \\'Age\\' in this dataset is severely biased.\\n\")\n", " unbiased_linked_data = unbiased_linked_data.drop(columns='Age')\n", " else:\n", " print(f\"The distribution of the feature \\'Age\\' in this dataset is fine.\\n\")\n", " \n", "if \"Gender\" in unbiased_linked_data.columns:\n", " gender_biased = judge_binary_variable_biased(unbiased_linked_data, 'Gender')\n", " if gender_biased:\n", " print(f\"The distribution of the feature \\'Gender\\' in this dataset is severely biased.\\n\")\n", " unbiased_linked_data = unbiased_linked_data.drop(columns='Gender')\n", " else:\n", " print(f\"The distribution of the feature \\'Gender\\' in this dataset is fine.\\n\")\n", "\n", "# 5. Conduct quality check and save the cohort information.\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=unbiased_linked_data,\n", " note=\"This dataset contains gene expression data from human MSCs in the context of osteoporosis research, comparing osteogenic versus adipogenic differentiation conditions when treated with TGFβ and other factors.\"\n", ")\n", "\n", "# 6. If the linked data is usable, save it as a CSV file to 'out_data_file'.\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " unbiased_linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }