{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "f362c874", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:37.751686Z", "iopub.status.busy": "2025-03-25T06:25:37.751507Z", "iopub.status.idle": "2025-03-25T06:25:37.917224Z", "shell.execute_reply": "2025-03-25T06:25:37.916829Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Alzheimers_Disease\"\n", "cohort = \"GSE117589\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Alzheimers_Disease\"\n", "in_cohort_dir = \"../../input/GEO/Alzheimers_Disease/GSE117589\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Alzheimers_Disease/GSE117589.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv\"\n", "json_path = \"../../output/preprocess/Alzheimers_Disease/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "c35049cb", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "f4aad409", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:37.918737Z", "iopub.status.busy": "2025-03-25T06:25:37.918589Z", "iopub.status.idle": "2025-03-25T06:25:38.009147Z", "shell.execute_reply": "2025-03-25T06:25:38.008804Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"REST and Neural Gene Network Dysregulation in iPS Cell Models of Alzheimer’s Disease\"\n", "!Series_summary\t\"This SuperSeries is composed of the SubSeries listed below.\"\n", "!Series_overall_design\t\"Refer to individual Series\"\n", "Sample Characteristics Dictionary:\n", "{0: ['cell type: induced pluripotent stem cells', 'cell type: neurons', 'cell type: neural progenitor cells'], 1: ['subject: 60F', 'subject: 64M', 'subject: 72M', 'subject: 73M', 'subject: 75F', 'subject: 92F', 'subject: 60M', 'subject: 69F', 'subject: 87F'], 2: ['diagnosis: normal', \"diagnosis: sporadic Alzheimer's disease\"], 3: ['clone: Clone 1', 'clone: Clone 2'], 4: ['coriell #: AG04455', 'coriell #: AG08125', 'coriell #: AG08379', 'coriell #: AG08509', 'coriell #: AG14244', 'coriell #: AG09173', 'coriell #: AG07376', 'coriell #: AG21158', 'coriell #: AG08243', 'coriell #: AG10788', 'coriell #: AG06869']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "1c037745", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "1d67ad1b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:38.010196Z", "iopub.status.busy": "2025-03-25T06:25:38.010078Z", "iopub.status.idle": "2025-03-25T06:25:38.031828Z", "shell.execute_reply": "2025-03-25T06:25:38.031496Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Preview of extracted clinical features:\n", "{'GSM3304268': [0.0, 60.0, 0.0], 'GSM3304269': [0.0, 64.0, 1.0], 'GSM3304270': [0.0, 72.0, 1.0], 'GSM3304271': [0.0, 73.0, 1.0], 'GSM3304272': [0.0, 75.0, 0.0], 'GSM3304273': [0.0, 92.0, 0.0], 'GSM3304274': [1.0, 60.0, 1.0], 'GSM3304275': [1.0, 69.0, 0.0], 'GSM3304276': [1.0, 72.0, 1.0], 'GSM3304277': [1.0, 87.0, 0.0], 'GSM3304278': [0.0, 60.0, 0.0], 'GSM3304279': [0.0, 64.0, 1.0], 'GSM3304280': [0.0, 72.0, 1.0], 'GSM3304281': [0.0, 73.0, 1.0], 'GSM3304282': [0.0, 75.0, 0.0], 'GSM3304283': [0.0, 92.0, 0.0], 'GSM3304284': [1.0, 60.0, 0.0], 'GSM3304285': [1.0, 60.0, 1.0], 'GSM3304286': [1.0, 69.0, 0.0], 'GSM3304287': [1.0, 72.0, 1.0], 'GSM3304288': [1.0, 87.0, 0.0], 'GSM3304289': [0.0, 60.0, 0.0], 'GSM3304290': [0.0, 64.0, 1.0], 'GSM3304291': [0.0, 72.0, 1.0], 'GSM3304292': [0.0, 73.0, 1.0], 'GSM3304293': [0.0, 92.0, 0.0], 'GSM3304294': [1.0, 60.0, 0.0], 'GSM3304295': [1.0, 60.0, 1.0], 'GSM3304296': [1.0, 69.0, 0.0], 'GSM3304297': [1.0, 72.0, 1.0], 'GSM3304298': [1.0, 87.0, 0.0]}\n", "Clinical features saved to ../../output/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information and sample characteristics, this appears to be a dataset with gene expression data\n", "# from iPSCs, neurons, and neural progenitor cells. Therefore, gene expression data is likely available.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "\n", "# For Alzheimer's Disease trait:\n", "# Looking at key 2, we see \"diagnosis: normal\" and \"diagnosis: sporadic Alzheimer's disease\"\n", "trait_row = 2\n", "\n", "# For age:\n", "# Age is not explicitly given but might be inferred from key 1 where subject info contains age and gender\n", "# e.g., 'subject: 60F', 'subject: 64M'\n", "age_row = 1\n", "\n", "# For gender:\n", "# Gender is also in key 1 as part of subject information\n", "gender_row = 1\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "def convert_trait(value):\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(': ')[-1].strip().lower()\n", " if \"alzheimer\" in value or \"ad\" in value:\n", " return 1\n", " elif \"normal\" in value or \"control\" in value or \"healthy\" in value:\n", " return 0\n", " return None\n", "\n", "def convert_age(value):\n", " if not isinstance(value, str):\n", " return None\n", " # Extract age from patterns like 'subject: 60F', 'subject: 64M'\n", " value = value.split(': ')[-1].strip()\n", " # Extract digits from the beginning of the string\n", " import re\n", " age_match = re.match(r'^(\\d+)', value)\n", " if age_match:\n", " try:\n", " return int(age_match.group(1))\n", " except ValueError:\n", " return None\n", " return None\n", "\n", "def convert_gender(value):\n", " if not isinstance(value, str):\n", " return None\n", " # Extract gender from patterns like 'subject: 60F', 'subject: 64M'\n", " value = value.split(': ')[-1].strip()\n", " # Check if the last character is 'F' or 'M'\n", " if value.endswith('F'):\n", " return 0 # Female\n", " elif value.endswith('M'):\n", " return 1 # Male\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n", " is_gene_available=is_gene_available, is_trait_available=is_trait_available)\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Assume clinical_data is already loaded from a previous step\n", " try:\n", " # Extract clinical features using the clinical_data DataFrame from step 1\n", " clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical features\n", " print(\"Preview of extracted clinical features:\")\n", " print(preview_df(clinical_features))\n", " \n", " # Save the extracted clinical features\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " clinical_features.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n", " except NameError:\n", " print(\"Clinical data not available from previous steps. Skipping clinical feature extraction.\")\n", " except Exception as e:\n", " print(f\"Error in clinical feature extraction: {e}\")\n" ] }, { "cell_type": "markdown", "id": "eede0869", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "ace4ccca", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:38.032917Z", "iopub.status.busy": "2025-03-25T06:25:38.032804Z", "iopub.status.idle": "2025-03-25T06:25:38.116296Z", "shell.execute_reply": "2025-03-25T06:25:38.115929Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "First 20 gene/probe identifiers:\n", "Index(['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at',\n", " 'ENSG00000000457_at', 'ENSG00000000460_at', 'ENSG00000000938_at',\n", " 'ENSG00000000971_at', 'ENSG00000001036_at', 'ENSG00000001084_at',\n", " 'ENSG00000001167_at', 'ENSG00000001460_at', 'ENSG00000001461_at',\n", " 'ENSG00000001497_at', 'ENSG00000001561_at', 'ENSG00000001617_at',\n", " 'ENSG00000001626_at', 'ENSG00000001629_at', 'ENSG00000001631_at',\n", " 'ENSG00000002016_at', 'ENSG00000002079_at'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. First get the file paths again to access the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data from the matrix_file\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 3. Print the first 20 row IDs (gene or probe identifiers) for future observation\n", "print(\"First 20 gene/probe identifiers:\")\n", "print(gene_data.index[:20])\n" ] }, { "cell_type": "markdown", "id": "99156441", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "98f0cc09", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:38.117690Z", "iopub.status.busy": "2025-03-25T06:25:38.117568Z", "iopub.status.idle": "2025-03-25T06:25:38.119538Z", "shell.execute_reply": "2025-03-25T06:25:38.119217Z" } }, "outputs": [], "source": [ "# Analysis of gene identifiers\n", "# The identifiers start with 'ENSG' which indicates they are Ensembl gene IDs\n", "# These are not standard human gene symbols (like BRCA1, APP, etc.)\n", "# Ensembl IDs need to be mapped to standard gene symbols for better interpretability\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "27223c64", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "767604d2", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:38.120814Z", "iopub.status.busy": "2025-03-25T06:25:38.120700Z", "iopub.status.idle": "2025-03-25T06:25:38.865986Z", "shell.execute_reply": "2025-03-25T06:25:38.865603Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene annotation preview:\n", "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'SPOT_ID': ['ENSG00000000003', 'ENSG00000000005', 'ENSG00000000419', 'ENSG00000000457', 'ENSG00000000460'], 'Description': ['tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]', 'tenomodulin [Source:HGNC Symbol;Acc:HGNC:17757]', 'dolichyl-phosphate mannosyltransferase subunit 1, catalytic [Source:HGNC Symbol;Acc:HGNC:3005]', 'SCY1 like pseudokinase 3 [Source:HGNC Symbol;Acc:HGNC:19285]', 'chromosome 1 open reading frame 112 [Source:HGNC Symbol;Acc:HGNC:25565]']}\n" ] } ], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "60f1a9f6", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "fdc3d9f0", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:38.867417Z", "iopub.status.busy": "2025-03-25T06:25:38.867286Z", "iopub.status.idle": "2025-03-25T06:25:39.342695Z", "shell.execute_reply": "2025-03-25T06:25:39.342322Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Sample SPOT_ID and Description pairs:\n", "SPOT_ID: ENSG00000000003 - Description: tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\n", "SPOT_ID: ENSG00000000005 - Description: tenomodulin [Source:HGNC Symbol;Acc:HGNC:17757]\n", "SPOT_ID: ENSG00000000419 - Description: dolichyl-phosphate mannosyltransferase subunit 1, catalytic [Source:HGNC Symbol;Acc:HGNC:3005]\n", "SPOT_ID: ENSG00000000457 - Description: SCY1 like pseudokinase 3 [Source:HGNC Symbol;Acc:HGNC:19285]\n", "SPOT_ID: ENSG00000000460 - Description: chromosome 1 open reading frame 112 [Source:HGNC Symbol;Acc:HGNC:25565]\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene mapping preview:\n", "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'Gene': [['HGNC'], ['HGNC'], ['HGNC'], ['SCY1', 'HGNC'], ['HGNC']]}\n", "Number of probes with gene symbols: 18144\n", "Gene data shape before normalization: (0, 31)\n", "Sample gene symbols before normalization:\n", "[]\n", "Gene data shape after normalization: (0, 31)\n", "\n", "Processed gene expression data preview (first 5 rows, 5 columns):\n", "Gene data is empty after processing\n", "Processed gene data saved to ../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\n" ] } ], "source": [ "# 1. Determine which columns contain gene identifiers and gene symbols\n", "# The 'ID' column in gene_annotation matches the index in gene_data\n", "# We need to extract the official gene symbols from the Description field\n", "\n", "# Let's look at the SPOT_ID and Description columns more closely\n", "print(\"Sample SPOT_ID and Description pairs:\")\n", "for i in range(min(5, len(gene_annotation))):\n", " print(f\"SPOT_ID: {gene_annotation.iloc[i]['SPOT_ID']} - Description: {gene_annotation.iloc[i]['Description']}\")\n", "\n", "# Create a mapping from ENSEMBL IDs to gene symbols using regex to extract symbols from Description\n", "import re\n", "\n", "def extract_gene_symbol_from_description(description_text):\n", " if not isinstance(description_text, str):\n", " return []\n", " \n", " # Pattern to extract HGNC symbols from description\n", " # Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\" -> extract the HGNC ID 11858\n", " hgnc_match = re.search(r'HGNC:(\\d+)', description_text)\n", " if hgnc_match:\n", " # Use extract_human_gene_symbols to get any gene symbols in the text\n", " symbols = extract_human_gene_symbols(description_text)\n", " if symbols:\n", " return symbols\n", " \n", " # If no symbols found with extract_human_gene_symbols, try to get the first word\n", " # that might be a gene symbol\n", " first_part_match = re.match(r'^(\\w+)', description_text)\n", " if first_part_match:\n", " return [first_part_match.group(1)]\n", " \n", " return []\n", "\n", "# Create a custom mapping dataframe that contains both ENSEMBL IDs and symbol information\n", "mapping_df = pd.DataFrame({\n", " 'ID': gene_annotation['ID'],\n", " 'Gene': gene_annotation['Description'].apply(extract_human_gene_symbols)\n", "})\n", "\n", "# Filter out rows where Gene is an empty list\n", "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n", "\n", "# Print the first few rows of the mapping to verify\n", "print(\"Gene mapping preview:\")\n", "print(preview_df(mapping_df))\n", "print(f\"Number of probes with gene symbols: {len(mapping_df)}\")\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_df)\n", "\n", "# Print shape before normalization\n", "print(f\"Gene data shape before normalization: {gene_data.shape}\")\n", "\n", "# Check if gene symbols need normalization\n", "print(\"Sample gene symbols before normalization:\")\n", "print(list(gene_data.index[:10]))\n", "\n", "# Normalize gene symbols to ensure consistency\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "\n", "# Print shape after normalization\n", "print(f\"Gene data shape after normalization: {gene_data.shape}\")\n", "\n", "# Preview the first few rows of the processed gene expression data\n", "print(\"\\nProcessed gene expression data preview (first 5 rows, 5 columns):\")\n", "if not gene_data.empty:\n", " print(gene_data.iloc[:5, :5])\n", "else:\n", " print(\"Gene data is empty after processing\")\n", "\n", "# Save the processed gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Processed gene data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "a1524db6", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "972390aa", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:39.344195Z", "iopub.status.busy": "2025-03-25T06:25:39.344071Z", "iopub.status.idle": "2025-03-25T06:25:40.736480Z", "shell.execute_reply": "2025-03-25T06:25:40.736105Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene mapping preview:\n", "{'ID': ['ENSG00000000003_at', 'ENSG00000000005_at', 'ENSG00000000419_at', 'ENSG00000000457_at', 'ENSG00000000460_at'], 'Gene': [['HGNC'], ['HGNC'], ['HGNC'], ['SCY1', 'HGNC'], ['HGNC']]}\n", "Number of probes with gene symbols: 18145\n", "\n", "Gene expression data preview:\n", "Gene expression data shape: (0, 31)\n", "Sample column names: ['GSM3304268', 'GSM3304269', 'GSM3304270', 'GSM3304271', 'GSM3304272']\n", "Re-loaded gene data shape: (20027, 31)\n", "Gene data shape after mapping: (0, 31)\n", "Mapped gene data is suspiciously small. Trying alternative approach...\n", "Alternative mapping created with 18146 entries\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Gene data shape after alternative mapping: (2551, 31)\n", "Processed gene data saved to ../../output/preprocess/Alzheimers_Disease/gene_data/GSE117589.csv\n" ] } ], "source": [ "# 1. First get the file paths using geo_get_relevant_filepaths function\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 3. Extract gene symbols from Description field properly\n", "def extract_gene_symbol_from_description(description_text):\n", " if not isinstance(description_text, str):\n", " return []\n", " \n", " # Get the gene name from the beginning of description (before [Source:...])\n", " # Example: \"tetraspanin 6 [Source:HGNC Symbol;Acc:HGNC:11858]\" -> \"tetraspanin 6\"\n", " name_part = description_text.split('[Source:')[0].strip()\n", " \n", " # Many descriptions have format \"Gene Name [Source:...]\" - extract the gene symbol\n", " # Gene symbols are typically uppercase, so look for capital letters\n", " symbols = extract_human_gene_symbols(description_text)\n", " \n", " # If we found symbols using the extract_human_gene_symbols function, return them\n", " if symbols:\n", " return symbols\n", " \n", " # Fallback: try to extract the first word if it looks like a gene symbol\n", " words = name_part.split()\n", " if words and len(words[0]) <= 10 and any(c.isupper() for c in words[0]):\n", " return [words[0]]\n", " \n", " return []\n", "\n", "# Create a custom mapping dataframe\n", "mapping_df = pd.DataFrame({\n", " 'ID': gene_annotation['ID'],\n", " 'Gene': gene_annotation['Description'].apply(extract_gene_symbol_from_description)\n", "})\n", "\n", "# Filter out rows where Gene is an empty list\n", "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n", "\n", "# Print the first few rows of the mapping to verify\n", "print(\"Gene mapping preview:\")\n", "print(preview_df(mapping_df))\n", "print(f\"Number of probes with gene symbols: {len(mapping_df)}\")\n", "\n", "# Let's also check gene expression data to make sure it's not empty\n", "print(\"\\nGene expression data preview:\")\n", "print(f\"Gene expression data shape: {gene_data.shape}\")\n", "print(f\"Sample column names: {list(gene_data.columns[:5])}\")\n", "\n", "# Extract gene expression data again from the matrix file to ensure we have good data\n", "gene_data = get_genetic_data(matrix_file)\n", "print(f\"Re-loaded gene data shape: {gene_data.shape}\")\n", "\n", "# 3. Apply the gene mapping to convert probe-level measurements to gene expression data\n", "gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n", "print(f\"Gene data shape after mapping: {gene_data_mapped.shape}\")\n", "\n", "# If the mapped data is too small or empty, try a different approach\n", "if gene_data_mapped.shape[0] < 100:\n", " print(\"Mapped gene data is suspiciously small. Trying alternative approach...\")\n", " # Direct approach: Extract gene name from the beginning of the Description\n", " mapping_df = pd.DataFrame({\n", " 'ID': gene_annotation['ID'],\n", " 'Gene': gene_annotation['Description'].apply(lambda x: \n", " x.split('[')[0].strip() if isinstance(x, str) else '')\n", " })\n", " # Keep only non-empty gene names\n", " mapping_df = mapping_df[mapping_df['Gene'] != '']\n", " print(f\"Alternative mapping created with {len(mapping_df)} entries\")\n", " \n", " # Apply alternative mapping\n", " gene_data_mapped = apply_gene_mapping(gene_data, mapping_df)\n", " print(f\"Gene data shape after alternative mapping: {gene_data_mapped.shape}\")\n", "\n", "# If still empty, use the original gene data with ENSEMBL IDs as gene names\n", "if gene_data_mapped.shape[0] < 100:\n", " print(\"Using original gene data with ENSEMBL IDs as fallback\")\n", " # Remove the _at suffix from the index\n", " gene_data.index = gene_data.index.str.replace('_at', '')\n", " gene_data_mapped = gene_data\n", " print(f\"Using original gene data: {gene_data_mapped.shape}\")\n", "\n", "# Save the processed gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data_mapped.to_csv(out_gene_data_file)\n", "print(f\"Processed gene data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "af163808", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 9, "id": "740e6730", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:25:40.737991Z", "iopub.status.busy": "2025-03-25T06:25:40.737869Z", "iopub.status.idle": "2025-03-25T06:25:40.757971Z", "shell.execute_reply": "2025-03-25T06:25:40.757644Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical data columns: Index(['GSM3304268', 'GSM3304269', 'GSM3304270', 'GSM3304271', 'GSM3304272',\n", " 'GSM3304273', 'GSM3304274', 'GSM3304275', 'GSM3304276', 'GSM3304277',\n", " 'GSM3304278', 'GSM3304279', 'GSM3304280', 'GSM3304281', 'GSM3304282',\n", " 'GSM3304283', 'GSM3304284', 'GSM3304285', 'GSM3304286', 'GSM3304287',\n", " 'GSM3304288', 'GSM3304289', 'GSM3304290', 'GSM3304291', 'GSM3304292',\n", " 'GSM3304293', 'GSM3304294', 'GSM3304295', 'GSM3304296', 'GSM3304297',\n", " 'GSM3304298'],\n", " dtype='object')\n", "Gene data shape: (2551, 31)\n", "Linked data shape: (2554, 31)\n", "Linked data index preview: ['Alzheimers_Disease', 'Age', 'Gender', 'A-', 'A-52', 'A0', 'A1', 'A10', 'A11', 'A12']\n", "Transposed linked data shape: (31, 2554)\n", "Actual columns in linked_data: ['Alzheimers_Disease', 'Age', 'Gender', 'A-', 'A-52', 'A0', 'A1', 'A10', 'A11', 'A12']\n", "Data shape after handling missing values: (0, 2)\n", "Quartiles for 'Alzheimers_Disease':\n", " 25%: nan\n", " 50% (Median): nan\n", " 75%: nan\n", "Min: nan\n", "Max: nan\n", "The distribution of the feature 'Alzheimers_Disease' in this dataset is fine.\n", "\n", "Quartiles for 'Age':\n", " 25%: nan\n", " 50% (Median): nan\n", " 75%: nan\n", "Min: nan\n", "Max: nan\n", "The distribution of the feature 'Age' in this dataset is fine.\n", "\n", "Trait bias assessment: False\n", "Data columns after bias assessment: ['Alzheimers_Disease', 'Age']\n", "Abnormality detected in the cohort: GSE117589. Preprocessing failed.\n", "A new JSON file was created at: ../../output/preprocess/Alzheimers_Disease/cohort_info.json\n", "Dataset not usable due to bias or other issues. Linked data not saved.\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "/tmp/ipykernel_51556/2649569560.py:40: FutureWarning: The behavior of DataFrame concatenation with empty or all-NA entries is deprecated. In a future version, this will no longer exclude empty or all-NA columns when determining the result dtypes. To retain the old behavior, exclude the relevant entries before the concat operation.\n", " linked_data = pd.concat([clinical_data, gene_data_mapped], axis=0)\n" ] } ], "source": [ "# Let's continue from where we left off with the gene data processing\n", "# Load clinical data that was saved earlier\n", "clinical_data = pd.read_csv(out_clinical_data_file)\n", "print(\"Clinical data columns:\", clinical_data.columns)\n", "\n", "# Load gene expression data \n", "gene_data_mapped = pd.read_csv(out_gene_data_file, index_col=0)\n", "print(\"Gene data shape:\", gene_data_mapped.shape)\n", "\n", "# We need to transform clinical data into the right format for linking\n", "# First, check if the clinical data has any column that we can use as sample identifiers\n", "if 'Unnamed: 0' in clinical_data.columns:\n", " clinical_data.rename(columns={'Unnamed: 0': 'Sample'}, inplace=True)\n", " clinical_data.set_index('Sample', inplace=True)\n", "else:\n", " # Create a DataFrame with the appropriate structure: samples as columns, features as rows\n", " # First get sample IDs from gene data\n", " sample_ids = gene_data_mapped.columns.tolist()\n", " \n", " # Create a new DataFrame with the right structure\n", " new_clinical_df = pd.DataFrame(index=[trait, 'Age', 'Gender'], columns=sample_ids)\n", " \n", " # Fill in the values - assuming clinical_data has the same order of samples\n", " if len(clinical_data) == len(sample_ids):\n", " for i, sample_id in enumerate(sample_ids):\n", " if i < len(clinical_data):\n", " # Get values from clinical_data row i\n", " row = clinical_data.iloc[i]\n", " # Assign values to the new DataFrame\n", " if trait in row:\n", " new_clinical_df.loc[trait, sample_id] = row[trait]\n", " if 'Age' in row:\n", " new_clinical_df.loc['Age', sample_id] = row['Age']\n", " if 'Gender' in row:\n", " new_clinical_df.loc['Gender', sample_id] = row['Gender']\n", " \n", " clinical_data = new_clinical_df\n", "\n", "# 2. Link clinical and genetic data\n", "linked_data = pd.concat([clinical_data, gene_data_mapped], axis=0)\n", "print(\"Linked data shape:\", linked_data.shape)\n", "print(\"Linked data index preview:\", list(linked_data.index[:10]))\n", "\n", "# Transpose the linked data to have samples as rows and features as columns\n", "linked_data = linked_data.T\n", "print(\"Transposed linked data shape:\", linked_data.shape)\n", "print(\"Actual columns in linked_data:\", linked_data.columns.tolist()[:10])\n", "\n", "# 3. Handle missing values - use the trait variable from environment setup\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(\"Data shape after handling missing values:\", linked_data.shape)\n", "\n", "# 4. Determine trait and demographic bias\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "print(f\"Trait bias assessment: {is_biased}\")\n", "print(\"Data columns after bias assessment:\", list(linked_data.columns[:10]))\n", "\n", "# 5. Final quality validation and saving metadata\n", "note = \"Used alternative gene mapping approach to extract gene symbols from descriptions.\"\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path, \n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=note\n", ")\n", "\n", "# 6. Save linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file, index=True)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset not usable due to bias or other issues. Linked data not saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }