{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "fe8cf253", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:32:16.809171Z", "iopub.status.busy": "2025-03-25T06:32:16.808928Z", "iopub.status.idle": "2025-03-25T06:32:16.977623Z", "shell.execute_reply": "2025-03-25T06:32:16.977272Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Anxiety_disorder\"\n", "\n", "# Input paths\n", "tcga_root_dir = \"../../input/TCGA\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Anxiety_disorder/TCGA.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Anxiety_disorder/gene_data/TCGA.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Anxiety_disorder/clinical_data/TCGA.csv\"\n", "json_path = \"../../output/preprocess/Anxiety_disorder/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "cb928a35", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "0a3480f2", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:32:16.978852Z", "iopub.status.busy": "2025-03-25T06:32:16.978709Z", "iopub.status.idle": "2025-03-25T06:32:18.596990Z", "shell.execute_reply": "2025-03-25T06:32:18.596660Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Available TCGA subdirectories: ['TCGA_Liver_Cancer_(LIHC)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Thymoma_(THYM)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', '.DS_Store', 'CrawlData.ipynb', 'TCGA_Acute_Myeloid_Leukemia_(LAML)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)']\n", "Selected directory: TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG) - this dataset may contain clinical information about psychiatric conditions including anxiety\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\n", "Clinical data columns:\n", "['_INTEGRATION', '_PANCAN_CNA_PANCAN_K8', '_PANCAN_Cluster_Cluster_PANCAN', '_PANCAN_DNAMethyl_PANCAN', '_PANCAN_RPPA_PANCAN_K8', '_PANCAN_UNC_RNAseq_PANCAN_K16', '_PANCAN_mutation_PANCAN', '_PATIENT', '_cohort', '_primary_disease', '_primary_site', 'additional_pharmaceutical_therapy', 'additional_radiation_therapy', 'additional_surgery_locoregional_procedure', 'additional_surgery_metastatic_procedure', 'age_at_initial_pathologic_diagnosis', 'animal_insect_allergy_history', 'animal_insect_allergy_types', 'asthma_history', 'bcr_followup_barcode', 'bcr_patient_barcode', 'bcr_sample_barcode', 'days_to_additional_surgery_locoregional_procedure', 'days_to_additional_surgery_metastatic_procedure', 'days_to_birth', 'days_to_collection', 'days_to_death', 'days_to_initial_pathologic_diagnosis', 'days_to_last_followup', 'days_to_new_tumor_event_additional_surgery_procedure', 'days_to_new_tumor_event_after_initial_treatment', 'days_to_performance_status_assessment', 'eastern_cancer_oncology_group', 'eczema_history', 'family_history_of_cancer', 'family_history_of_primary_brain_tumor', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy', 'first_presenting_symptom', 'first_presenting_symptom_longest_duration', 'followup_case_report_form_submission_reason', 'followup_treatment_success', 'food_allergy_history', 'food_allergy_types', 'form_completion_date', 'gender', 'hay_fever_history', 'headache_history', 'histological_type', 'history_ionizing_rt_to_head', 'history_of_neoadjuvant_treatment', 'icd_10', 'icd_o_3_histology', 'icd_o_3_site', 'informed_consent_verified', 'inherited_genetic_syndrome_found', 'inherited_genetic_syndrome_result', 'initial_pathologic_diagnosis_method', 'initial_weight', 'intermediate_dimension', 'is_ffpe', 'karnofsky_performance_score', 'laterality', 'ldh1_mutation_found', 'ldh1_mutation_test_method', 'ldh1_mutation_tested', 'longest_dimension', 'lost_follow_up', 'mental_status_changes', 'mold_or_dust_allergy_history', 'motor_movement_changes', 'neoplasm_histologic_grade', 'new_neoplasm_event_type', 'new_tumor_event_additional_surgery_procedure', 'new_tumor_event_after_initial_treatment', 'oct_embedded', 'other_dx', 'pathology_report_file_name', 'patient_id', 'performance_status_scale_timing', 'person_neoplasm_cancer_status', 'postoperative_rx_tx', 'preoperative_antiseizure_meds', 'preoperative_corticosteroids', 'primary_therapy_outcome_success', 'prior_glioma', 'radiation_therapy', 'sample_type', 'sample_type_id', 'seizure_history', 'sensory_changes', 'shortest_dimension', 'supratentorial_localization', 'targeted_molecular_therapy', 'tissue_prospective_collection_indicator', 'tissue_retrospective_collection_indicator', 'tissue_source_site', 'tumor_location', 'tumor_tissue_site', 'vial_number', 'visual_changes', 'vital_status', 'year_of_initial_pathologic_diagnosis', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2', '_GENOMIC_ID_TCGA_GBMLGG_PDMarrayCNV', '_GENOMIC_ID_TCGA_GBMLGG_mutation', '_GENOMIC_ID_TCGA_GBMLGG_hMethyl450', '_GENOMIC_ID_TCGA_GBMLGG_PDMarray', '_GENOMIC_ID_TCGA_GBMLGG_gistic2', '_GENOMIC_ID_TCGA_GBMLGG_PDMRNAseq', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2_PANCAN', '_GENOMIC_ID_TCGA_GBMLGG_PDMRNAseqCNV', '_GENOMIC_ID_TCGA_GBMLGG_gistic2thd', '_GENOMIC_ID_TCGA_GBMLGG_exp_HiSeqV2_exon']\n" ] }, { "data": { "text/plain": [ "False" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "import os\n", "\n", "# Step 1: Look for directories related to Anxiety disorder\n", "tcga_subdirs = os.listdir(tcga_root_dir)\n", "print(f\"Available TCGA subdirectories: {tcga_subdirs}\")\n", "\n", "# Look for directory related to Anxiety disorder\n", "# Anxiety disorder might be found as a comorbidity in neurological or brain-related cancers\n", "# Examine if any directories might contain data relevant to anxiety disorders\n", "\n", "# While anxiety is common in cancer patients, it's not a primary cancer type\n", "# After reviewing all subdirectories, we need to determine if any datasets might contain \n", "# anxiety-related clinical information\n", "\n", "# For this analysis, we'll use the brain cancer datasets as they may be more likely to \n", "# contain psychiatric comorbidity data\n", "potential_matches = [\n", " 'TCGA_Glioblastoma_(GBM)',\n", " 'TCGA_Lower_Grade_Glioma_(LGG)',\n", " 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'\n", "]\n", "\n", "# Select the most comprehensive dataset from potential matches\n", "target_dir = 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'\n", "target_path = os.path.join(tcga_root_dir, target_dir)\n", "\n", "print(f\"Selected directory: {target_dir} - this dataset may contain clinical information about psychiatric conditions including anxiety\")\n", "\n", "# Step 2: Get the clinical and genetic data file paths\n", "clinical_path, genetic_path = tcga_get_relevant_filepaths(target_path)\n", "\n", "# Step 3: Load the datasets\n", "clinical_df = pd.read_csv(clinical_path, sep='\\t', index_col=0)\n", "genetic_df = pd.read_csv(genetic_path, sep='\\t', index_col=0)\n", "\n", "# Step 4: Print column names of clinical data\n", "print(\"\\nClinical data columns:\")\n", "print(clinical_df.columns.tolist())\n", "\n", "# Check if we have both gene data and potential trait data\n", "has_gene_data = not genetic_df.empty\n", "has_potential_trait_data = not clinical_df.empty\n", "\n", "# Record our initial assessment\n", "validate_and_save_cohort_info(\n", " is_final=False, \n", " cohort=\"TCGA\", \n", " info_path=json_path, \n", " is_gene_available=has_gene_data, \n", " is_trait_available=has_potential_trait_data\n", ")\n" ] }, { "cell_type": "markdown", "id": "d7241c54", "metadata": {}, "source": [ "### Step 2: Find Candidate Demographic Features" ] }, { "cell_type": "code", "execution_count": 3, "id": "a7a14e08", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:32:18.598815Z", "iopub.status.busy": "2025-03-25T06:32:18.598670Z", "iopub.status.idle": "2025-03-25T06:32:18.613769Z", "shell.execute_reply": "2025-03-25T06:32:18.613461Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Age columns preview:\n", "{'age_at_initial_pathologic_diagnosis': [44.0, 50.0, 59.0, 56.0, 40.0], 'days_to_birth': [-16179.0, -18341.0, -21617.0, -20516.0, -14806.0], 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust': [nan, nan, nan, nan, nan], 'first_diagnosis_age_of_animal_insect_allergy': [nan, nan, nan, nan, nan], 'first_diagnosis_age_of_food_allergy': [nan, nan, nan, nan, nan]}\n", "\n", "Gender columns preview:\n", "{'gender': ['FEMALE', 'MALE', 'MALE', 'FEMALE', 'FEMALE']}\n" ] } ], "source": [ "# Identify candidate age and gender columns\n", "candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', \n", " 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy']\n", "candidate_gender_cols = ['gender']\n", "\n", "# Get the first TCGA dataset from the directory to examine the candidates\n", "cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')\n", "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n", "\n", "# Load the clinical data\n", "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n", "\n", "# Extract and preview age columns\n", "age_preview = {}\n", "if candidate_age_cols:\n", " for col in candidate_age_cols:\n", " if col in clinical_df.columns:\n", " age_preview[col] = clinical_df[col].head(5).tolist()\n", "\n", "# Extract and preview gender columns\n", "gender_preview = {}\n", "if candidate_gender_cols:\n", " for col in candidate_gender_cols:\n", " if col in clinical_df.columns:\n", " gender_preview[col] = clinical_df[col].head(5).tolist()\n", "\n", "print(\"Age columns preview:\")\n", "print(age_preview)\n", "print(\"\\nGender columns preview:\")\n", "print(gender_preview)\n" ] }, { "cell_type": "markdown", "id": "2c04f702", "metadata": {}, "source": [ "### Step 3: Select Demographic Features" ] }, { "cell_type": "code", "execution_count": 4, "id": "bfe8d56c", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:32:18.615546Z", "iopub.status.busy": "2025-03-25T06:32:18.615410Z", "iopub.status.idle": "2025-03-25T06:32:18.618707Z", "shell.execute_reply": "2025-03-25T06:32:18.618419Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Selected age column: age_at_initial_pathologic_diagnosis\n", "Selected gender column: gender\n" ] } ], "source": [ "# Selecting the most appropriate age column\n", "age_columns = {\n", " 'age_at_initial_pathologic_diagnosis': [44.0, 50.0, 59.0, 56.0, 40.0], \n", " 'days_to_birth': [-16179.0, -18341.0, -21617.0, -20516.0, -14806.0], \n", " 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')], \n", " 'first_diagnosis_age_of_animal_insect_allergy': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')], \n", " 'first_diagnosis_age_of_food_allergy': [float('nan'), float('nan'), float('nan'), float('nan'), float('nan')]\n", "}\n", "\n", "# 'age_at_initial_pathologic_diagnosis' has meaningful values with no missing values\n", "age_col = 'age_at_initial_pathologic_diagnosis'\n", "\n", "# Selecting the most appropriate gender column\n", "gender_columns = {\n", " 'gender': ['FEMALE', 'MALE', 'MALE', 'FEMALE', 'FEMALE']\n", "}\n", "\n", "# 'gender' is the only column and has meaningful values\n", "gender_col = 'gender'\n", "\n", "# Print the chosen columns\n", "print(f\"Selected age column: {age_col}\")\n", "print(f\"Selected gender column: {gender_col}\")\n" ] }, { "cell_type": "markdown", "id": "487f8c4d", "metadata": {}, "source": [ "### Step 4: Feature Engineering and Validation" ] }, { "cell_type": "code", "execution_count": 5, "id": "4122ad33", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T06:32:18.620290Z", "iopub.status.busy": "2025-03-25T06:32:18.620184Z", "iopub.status.idle": "2025-03-25T06:32:20.152807Z", "shell.execute_reply": "2025-03-25T06:32:20.152354Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Potential anxiety-related columns: ['mental_status_changes']\n", "Other potentially relevant columns: ['mental_status_changes', 'seizure_history', 'headache_history']\n", "\n", "Values in mental_status_changes:\n", "mental_status_changes\n", "NO 353\n", "YES 120\n", "Name: count, dtype: int64\n", "\n", "Values in seizure_history:\n", "seizure_history\n", "YES 311\n", "NO 183\n", "Name: count, dtype: int64\n", "\n", "Values in headache_history:\n", "headache_history\n", "NO 302\n", "YES 177\n", "Name: count, dtype: int64\n", "\n", "No direct anxiety disorder indicator found in the TCGA dataset\n", "Dataset usability status: False\n", "Processing completed. No data saved as anxiety disorder information is not available in TCGA datasets.\n" ] } ], "source": [ "# Step 1: Extract and standardize the clinical features\n", "# Get file paths - use the brain cancer dataset identified earlier\n", "cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')\n", "clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)\n", "\n", "# Load data\n", "clinical_df = pd.read_csv(clinical_file_path, sep='\\t', index_col=0)\n", "genetic_df = pd.read_csv(genetic_file_path, sep='\\t', index_col=0)\n", "\n", "# Look for any anxiety-related columns in the clinical data\n", "anxiety_related_cols = [col for col in clinical_df.columns if any(term in col.lower() for term in \n", " ['anxiety', 'mental', 'psychiatric', 'psychological', 'mood'])]\n", "print(f\"Potential anxiety-related columns: {anxiety_related_cols}\")\n", "\n", "# Check for other columns that might indirectly relate to anxiety\n", "other_relevant_cols = ['mental_status_changes', 'seizure_history', 'headache_history']\n", "existing_relevant_cols = [col for col in other_relevant_cols if col in clinical_df.columns]\n", "print(f\"Other potentially relevant columns: {existing_relevant_cols}\")\n", "\n", "# Examine these columns if they exist\n", "for col in existing_relevant_cols:\n", " print(f\"\\nValues in {col}:\")\n", " print(clinical_df[col].value_counts())\n", "\n", "# While mental_status_changes exists, it's not a specific indicator of anxiety disorder\n", "print(\"\\nNo direct anxiety disorder indicator found in the TCGA dataset\")\n", "\n", "# Set flags to indicate that anxiety disorder trait is not available\n", "is_gene_available = True # We do have gene data\n", "is_trait_available = False # But we don't have anxiety disorder data\n", "\n", "# Validate and save this information - use is_final=False since we're just recording unavailability\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=\"TCGA\",\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "print(f\"Dataset usability status: {is_usable}\")\n", "print(\"Processing completed. No data saved as anxiety disorder information is not available in TCGA datasets.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }