{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "a5515400", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Colon_and_Rectal_Cancer\"\n", "cohort = \"GSE46862\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Colon_and_Rectal_Cancer\"\n", "in_cohort_dir = \"../../input/GEO/Colon_and_Rectal_Cancer/GSE46862\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/GSE46862.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/gene_data/GSE46862.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Colon_and_Rectal_Cancer/clinical_data/GSE46862.csv\"\n", "json_path = \"../../output/preprocess/Colon_and_Rectal_Cancer/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "371239d6", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "d92dcc2d", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "89877816", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "119eae27", "metadata": {}, "outputs": [], "source": [ "# Analyzing data availability and creating conversion functions\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on the background information, this study used Affymetrix GenChip arrays\n", "# for gene expression profiling, so gene expression data should be available\n", "is_gene_available = True\n", "\n", "# 2.1 Data Availability\n", "# From the sample characteristics dictionary:\n", "# - trait (chemoradiation therapy response) is in row 0\n", "# - age is in row 1\n", "# - gender (Sex) is in row 2\n", "trait_row = 0\n", "age_row = 1\n", "gender_row = 2\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"Convert chemoradiation therapy response to binary (1 for good response, 0 for poor response)\"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " response = value.split(':', 1)[1].strip()\n", " # Based on the description, NT and TO are better responses, MI and MO are worse responses\n", " if response == 'NT' or response == 'TO':\n", " return 1 # good response\n", " elif response == 'MI' or response == 'MO':\n", " return 0 # poor response\n", " else:\n", " return None\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age to continuous numeric value\"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " try:\n", " age = int(value.split(':', 1)[1].strip())\n", " return age\n", " except (ValueError, TypeError):\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender to binary (0 for female, 1 for male)\"\"\"\n", " if not value or ':' not in value:\n", " return None\n", " \n", " gender = value.split(':', 1)[1].strip().lower()\n", " if gender == 'male':\n", " return 1\n", " elif gender == 'female':\n", " return 0\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine trait data availability\n", "is_trait_available = trait_row is not None\n", "# Initial filtering\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Sample characteristics dictionary from previous step\n", " sample_chars = {\n", " 0: ['chemoradiation therapy response: MO', 'chemoradiation therapy response: TO', 'chemoradiation therapy response: MI', 'chemoradiation therapy response: NT'],\n", " 1: ['age: 68', 'age: 58', 'age: 66', 'age: 56', 'age: 55', 'age: 50', 'age: 37', 'age: 59', 'age: 46', 'age: 49', 'age: 62', 'age: 65', 'age: 63', 'age: 41', 'age: 33', 'age: 73', 'age: 70', 'age: 69', 'age: 39', 'age: 43', 'age: 48', 'age: 72', 'age: 76', 'age: 40', 'age: 54', 'age: 45', 'age: 71', 'age: 52', 'age: 53', 'age: 67'],\n", " 2: ['Sex: male', 'Sex: female'],\n", " 3: ['tumor stage (uicc-7th): IIIB', 'tumor stage (uicc-7th): 0', 'tumor stage (uicc-7th): I', 'tumor stage (uicc-7th): IIA', 'tumor stage (uicc-7th): IIIA', 'tumor stage (uicc-7th): IIIC', 'tumor stage (uicc-7th): IVA', 'tumor stage (uicc-7th): IV', 'tumor stage (uicc-7th): lll', 'tumor stage (uicc-7th): IIB'],\n", " 4: ['description (operation): LAR', 'description (operation): ULAR', 'description (operation): LAR, TAH', 'description (operation): LAR, ileostomy', \"description (operation): Hartmann's procedure\", 'description (operation): APR', 'description (operation): APR,TAH,LSO,S6 segmentectomy', 'description (operation): TEM', 'description (operation): L-LAR, Rt PLND, ileostomy', 'description (operation): ISR, colonic pouch, ileostomy', 'description (operation): ISR, coloanal, ileostomy', 'description (operation): R-LAR, ileostomy', 'description (operation): ISR, colonic pouch, Ileostomy', 'description (operation): ISR, colonic pouch, ileostomy, Rt PLND', 'description (operation): ISR, Coloanal, ileostomy', 'description (operation): ELAR', 'description (operation): ISR']\n", " }\n", " \n", " # Create a clinical data DataFrame with the structure expected by geo_select_clinical_features\n", " # Where rows are characteristics and each column would represent a sample\n", " clinical_data = pd.DataFrame()\n", " for key, values in sample_chars.items():\n", " clinical_data.loc[key] = values\n", " \n", " # Extract clinical features\n", " selected_features = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted features\n", " preview = preview_df(selected_features)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_features.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "ab64f083", "metadata": {}, "source": [ "### Step 3: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "f6eacdd2", "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import os\n", "import json\n", "import gzip\n", "from typing import Optional, Callable, Dict, Any, List\n", "import numpy as np\n", "import re\n", "\n", "# Load the clinical data \n", "clinical_data_file = os.path.join(in_cohort_dir, \"GSE46862_series_matrix.txt.gz\")\n", "\n", "try:\n", " # Read the clinical data\n", " with gzip.open(clinical_data_file, 'rt') as file:\n", " lines = file.readlines()\n", " \n", " # Extract sample characteristics\n", " sample_char_lines = [line for line in lines if line.startswith('!Sample_characteristics_ch1')]\n", " \n", " # Extract sample IDs\n", " sample_id_line = next((line for line in lines if line.startswith('!Sample_geo_accession')), None)\n", " if sample_id_line:\n", " sample_ids = sample_id_line.strip().split('\\t')[1:]\n", " else:\n", " sample_ids = []\n", " \n", " # Create a dictionary to organize sample characteristics\n", " sample_char_dict = {}\n", " \n", " for line in sample_char_lines:\n", " values = line.strip().split('\\t')[1:]\n", " sample_char_dict[len(sample_char_dict)] = values\n", " \n", " # Create a DataFrame from the dictionary\n", " clinical_data = pd.DataFrame(sample_char_dict, index=sample_ids).T\n", " \n", " # Print some sample data to analyze\n", " print(\"Sample characteristics dictionary:\")\n", " for key, values in sample_char_dict.items():\n", " unique_values = set(values)\n", " print(f\"Key {key}: {list(unique_values)[:5]}{' ...' if len(unique_values) > 5 else ''} (Unique values: {len(unique_values)})\")\n", " \n", " # Extract title and description for background information\n", " title_line = next((line for line in lines if line.startswith('!Series_title')), None)\n", " title = title_line.strip().split('!Series_title\\t')[1] if title_line else \"No title found\"\n", " \n", " description_lines = [line for line in lines if line.startswith('!Series_summary')]\n", " description = ' '.join([line.strip().split('!Series_summary\\t')[1] for line in description_lines]) if description_lines else \"No description found\"\n", " \n", " print(\"\\nDataset Title:\")\n", " print(title)\n", " print(\"\\nDataset Description:\")\n", " print(description)\n", " \n", " # Check if this is a gene expression dataset\n", " platform_line = next((line for line in lines if line.startswith('!Series_platform_id')), None)\n", " platform_id = platform_line.strip().split('!Series_platform_id\\t')[1] if platform_line else \"Unknown\"\n", " \n", " print(\"\\nPlatform ID:\")\n", " print(platform_id)\n", " \n", "except Exception as e:\n", " print(f\"Error reading clinical data: {e}\")\n", " clinical_data = pd.DataFrame()\n", " sample_char_dict = {}\n", "\n", "# 1. Gene Expression Data Availability\n", "# Based on platform info (GPL6244) and description, determine if gene expression data is likely available\n", "is_gene_available = True # The platform GPL6244 is for gene expression\n", "\n", "# 2. Clinical Feature Availability and Data Type Conversion\n", "# Analyze sample characteristics to identify trait, age, and gender information\n", "\n", "# 2.1 Trait Availability (Chemoradiation therapy response)\n", "trait_row = 0 # Chemoradiation therapy response is in row 0\n", "\n", "# Function to convert trait values\n", "def convert_trait(value):\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Remove quotes and extract value after colon\n", " value = str(value).strip('\"')\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert therapy responses to binary\n", " value_lower = str(value).lower()\n", " if 'nt' in value_lower or 'mo' in value_lower: # Non-responders\n", " return 0\n", " elif 'mi' in value_lower or 'to' in value_lower: # Responders\n", " return 1\n", " else:\n", " return None\n", "\n", "# 2.2 Age Availability\n", "age_row = 1 # Age information is in row 1\n", "\n", "# Function to convert age values\n", "def convert_age(value):\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Remove quotes and extract value after colon\n", " value = str(value).strip('\"')\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Try to extract numeric age\n", " try:\n", " age_match = re.search(r'(\\d+)', str(value))\n", " if age_match:\n", " return float(age_match.group(1))\n", " except:\n", " pass\n", " \n", " return None\n", "\n", "# 2.3 Gender Availability\n", "gender_row = 2 # Sex information is in row 2\n", "\n", "# Function to convert gender values\n", "def convert_gender(value):\n", " if value is None or pd.isna(value):\n", " return None\n", " \n", " # Remove quotes and extract value after colon\n", " value = str(value).strip('\"')\n", " if ':' in value:\n", " value = value.split(':', 1)[1].strip()\n", " \n", " # Convert to binary: Female = 0, Male = 1\n", " value_lower = str(value).lower()\n", " if 'female' in value_lower or 'f' == value_lower:\n", " return 0\n", " elif 'male' in value_lower or 'm' == value_lower:\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction (if trait_row is not None)\n", "if trait_row is not None:\n", " # Extract clinical features\n", " clinical_features_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted features\n", " print(\"\\nExtracted Clinical Features Preview:\")\n", " print(preview_df(clinical_features_df))\n", " \n", " # Create directory if it doesn't exist\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " \n", " # Save to CSV\n", " clinical_features_df.to_csv(out_clinical_data_file)\n", " print(f\"Clinical features saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "4a804951", "metadata": {}, "source": [ "### Step 4: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "c18dad67", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "a1898c17", "metadata": {}, "source": [ "### Step 5: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "abd87d55", "metadata": {}, "outputs": [], "source": [ "# Looking at the identifiers in the gene expression data\n", "# The identifiers appear to be numeric codes (like 7892501, 7892502, etc.)\n", "# These are not standard human gene symbols (which would be like BRCA1, TP53, etc.)\n", "# These are likely probe IDs from a microarray platform that need to be mapped to gene symbols\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "22ca76e6", "metadata": {}, "source": [ "### Step 6: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "7b9c95ba", "metadata": {}, "outputs": [], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Use the 'preview_df' function from the library to preview the data and print out the results.\n", "print(\"Gene annotation preview:\")\n", "print(preview_df(gene_annotation))\n" ] }, { "cell_type": "markdown", "id": "21fc70fd", "metadata": {}, "source": [ "### Step 7: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "08403493", "metadata": {}, "outputs": [], "source": [ "# Analyze the format of gene identifiers in both datasets\n", "print(\"\\nIdentifying mapping columns:\")\n", "print(f\"Gene expression data has identifiers like: {gene_data.index[:5]}\")\n", "print(f\"Gene annotation data columns: {gene_annotation.columns}\")\n", "\n", "# The 'ID' column in gene_annotation matches the index in gene_data\n", "# The 'gene_assignment' column contains gene symbols\n", "\n", "# Identifying gene symbols in the gene_assignment column\n", "print(\"\\nChecking gene_assignment format:\")\n", "sample_gene = gene_annotation['gene_assignment'].iloc[2]\n", "print(f\"Sample gene assignment: {sample_gene[:200]}...\")\n", "\n", "# Extract the mapping between probe IDs and gene symbols\n", "gene_mapping = get_gene_mapping(\n", " annotation=gene_annotation, \n", " prob_col='ID', \n", " gene_col='gene_assignment'\n", ")\n", "\n", "print(\"\\nMapped genes preview:\")\n", "print(gene_mapping.head())\n", "\n", "# Apply the gene mapping to convert probe-based expression to gene expression\n", "gene_data = apply_gene_mapping(\n", " expression_df=gene_data,\n", " mapping_df=gene_mapping\n", ")\n", "\n", "# Preview the gene expression data\n", "print(\"\\nGene expression data after mapping:\")\n", "print(f\"Shape: {gene_data.shape}\")\n", "print(f\"First 5 genes: {gene_data.index[:5]}\")\n", "print(f\"Sample columns: {gene_data.columns[:5]}\")\n", "\n", "# Save the gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"\\nGene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "c3daa7cf", "metadata": {}, "source": [ "### Step 8: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "d00aab4f", "metadata": {}, "outputs": [], "source": [ "# 1. Normalize gene symbols in the gene expression data\n", "gene_data = pd.read_csv(out_gene_data_file, index_col=0)\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Normalized gene data shape: {normalized_gene_data.shape}\")\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Retrieve the original clinical data directly from step 2\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "background_info, clinical_df = get_background_and_clinical_data(matrix_file)\n", "\n", "# Extract clinical features using the geo_select_clinical_features function as in step 3\n", "clinical_features_df = geo_select_clinical_features(\n", " clinical_df=clinical_df,\n", " trait=trait,\n", " trait_row=0, # chemoradiation therapy response\n", " convert_trait=lambda x: 1 if any(resp in str(x).upper() for resp in [\"NT\", \"TO\"]) else 0, # better response = 1\n", " age_row=1, # age information\n", " convert_age=lambda x: int(str(x).split(\":\", 1)[1].strip()) if \":\" in str(x) else None,\n", " gender_row=2, # gender information\n", " convert_gender=lambda x: 0 if \"female\" in str(x).lower() else 1 if \"male\" in str(x).lower() else None\n", ")\n", "\n", "# Fix column names in gene data to match clinical data format\n", "normalized_gene_data.columns = [col.strip('\"') for col in normalized_gene_data.columns]\n", "\n", "# 3. Link the clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features_df, normalized_gene_data)\n", "print(f\"Initial linked data shape: {linked_data.shape}\")\n", "\n", "# 4. Handle missing values in the linked data\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data after handling missing values: {linked_data.shape}\")\n", "\n", "# 5. Determine whether the trait and demographic features are severely biased\n", "is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 6. Conduct final quality validation and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=True, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=linked_data,\n", " note=\"Dataset contains gene expression data from rectal cancer patients with variable responses to chemoradiation therapy.\"\n", ")\n", "\n", "# 7. If the linked data is usable, save it as a CSV file\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }