{ "cells": [ { "cell_type": "code", "execution_count": 1, "id": "303f71e6", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.110775Z", "iopub.status.busy": "2025-03-25T08:37:11.110559Z", "iopub.status.idle": "2025-03-25T08:37:11.280027Z", "shell.execute_reply": "2025-03-25T08:37:11.279672Z" } }, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Depression\"\n", "cohort = \"GSE128387\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Depression\"\n", "in_cohort_dir = \"../../input/GEO/Depression/GSE128387\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Depression/GSE128387.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Depression/gene_data/GSE128387.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Depression/clinical_data/GSE128387.csv\"\n", "json_path = \"../../output/preprocess/Depression/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "eb8146d9", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": 2, "id": "bced1a05", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.281498Z", "iopub.status.busy": "2025-03-25T08:37:11.281346Z", "iopub.status.idle": "2025-03-25T08:37:11.358624Z", "shell.execute_reply": "2025-03-25T08:37:11.358306Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Background Information:\n", "!Series_title\t\"Expression data from children and adolescents treated with Fluoxetine\"\n", "!Series_summary\t\"It is well-known that between 40 and 50% of patients taking antidepressants do not respond to treatment or relapse. Genome wide gene expression studies can help us to understand better the response to antidepressants, revealing the effects of both genetic background and environmental/epigenetic factors.\"\n", "!Series_summary\t\"We used microarrays to detail the response to Fluoxetine in children and adolescents, analysing the expression just before intake of drug and 8 weeks after starting the treatment.\"\n", "!Series_overall_design\t\"RNA extraction was done from blood of patients. Two samples of each patient were obtained, one previous to treatment and another 8 weeks later. The samples with better quality were selected for hybridization and Affymetrix microarrays.\"\n", "Sample Characteristics Dictionary:\n", "{0: ['tissue: Blood'], 1: ['illness: Major Depressive Disorder'], 2: ['age: 16', 'age: 13', 'age: 12', 'age: 14', 'age: 17', 'age: 15'], 3: ['Sex: female', 'Sex: male']}\n" ] } ], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "7ddd7654", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": 3, "id": "16bf9b8e", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.359726Z", "iopub.status.busy": "2025-03-25T08:37:11.359613Z", "iopub.status.idle": "2025-03-25T08:37:11.364706Z", "shell.execute_reply": "2025-03-25T08:37:11.364413Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Clinical data file not found at: ../../input/GEO/Depression/GSE128387/clinical_data.csv\n", "Skipping clinical feature extraction step.\n" ] } ], "source": [ "# 1. Gene Expression Data Availability\n", "# Based on the background information, this study used Affymetrix microarrays\n", "# to measure gene expression in blood samples, so gene expression data is available.\n", "is_gene_available = True\n", "\n", "# 2. Variable Availability and Data Type Conversion\n", "# 2.1 Data Availability\n", "# From the sample characteristics dictionary:\n", "# Key 1 contains illness data (Major Depressive Disorder) - this is our trait\n", "# Key 2 contains age data (ages 12-17)\n", "# Key 3 contains gender data (female/male)\n", "trait_row = 1\n", "age_row = 2\n", "gender_row = 3\n", "\n", "# 2.2 Data Type Conversion Functions\n", "def convert_trait(value):\n", " \"\"\"Convert depression trait data to binary format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"major depressive disorder\" in value:\n", " return 1 # Has depression\n", " return None # Unknown or other condition\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip()\n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " return None\n", "\n", "# 3. Save Metadata - Initial Filtering\n", "# Trait data is available (trait_row is not None)\n", "is_trait_available = trait_row is not None\n", "validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path, \n", " is_gene_available=is_gene_available, \n", " is_trait_available=is_trait_available)\n", "\n", "# 4. Clinical Feature Extraction\n", "# Check if clinical data file exists before attempting to read it\n", "clinical_data_path = f\"{in_cohort_dir}/clinical_data.csv\"\n", "if os.path.exists(clinical_data_path):\n", " # Since trait_row is not None, we proceed with clinical feature extraction\n", " clinical_data = pd.read_csv(clinical_data_path)\n", "\n", " # Extract clinical features using the geo_select_clinical_features function\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", "\n", " # Preview the selected clinical features\n", " preview = preview_df(selected_clinical_df)\n", " print(\"Preview of selected clinical features:\")\n", " print(preview)\n", "\n", " # Save the clinical data to CSV\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", "else:\n", " print(f\"Clinical data file not found at: {clinical_data_path}\")\n", " print(\"Skipping clinical feature extraction step.\")\n" ] }, { "cell_type": "markdown", "id": "0430590d", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": 4, "id": "6cc5d295", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.365735Z", "iopub.status.busy": "2025-03-25T08:37:11.365625Z", "iopub.status.idle": "2025-03-25T08:37:11.462925Z", "shell.execute_reply": "2025-03-25T08:37:11.462527Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Matrix file found: ../../input/GEO/Depression/GSE128387/GSE128387_series_matrix.txt.gz\n", "Gene data shape: (48144, 32)\n", "First 20 gene/probe identifiers:\n", "Index(['16657436', '16657440', '16657445', '16657447', '16657450', '16657469',\n", " '16657473', '16657476', '16657480', '16657485', '16657489', '16657492',\n", " '16657502', '16657506', '16657509', '16657514', '16657527', '16657529',\n", " '16657534', '16657554'],\n", " dtype='object', name='ID')\n" ] } ], "source": [ "# 1. Get the SOFT and matrix file paths again \n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "print(f\"Matrix file found: {matrix_file}\")\n", "\n", "# 2. Use the get_genetic_data function from the library to get the gene_data\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(f\"Gene data shape: {gene_data.shape}\")\n", " \n", " # 3. Print the first 20 row IDs (gene or probe identifiers)\n", " print(\"First 20 gene/probe identifiers:\")\n", " print(gene_data.index[:20])\n", "except Exception as e:\n", " print(f\"Error extracting gene data: {e}\")\n" ] }, { "cell_type": "markdown", "id": "5201d0f4", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": 5, "id": "29f4d387", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.464285Z", "iopub.status.busy": "2025-03-25T08:37:11.464167Z", "iopub.status.idle": "2025-03-25T08:37:11.466099Z", "shell.execute_reply": "2025-03-25T08:37:11.465802Z" } }, "outputs": [], "source": [ "# These identifiers (16657436, 16657440, etc.) appear to be numeric IDs, likely probe IDs\n", "# from a microarray platform rather than standard human gene symbols.\n", "# Human gene symbols would typically be alphanumeric like BRCA1, TP53, etc.\n", "# Therefore, mapping to gene symbols will be required for biological interpretation.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "1395aea5", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": 6, "id": "537438dc", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:11.467284Z", "iopub.status.busy": "2025-03-25T08:37:11.467179Z", "iopub.status.idle": "2025-03-25T08:37:18.049975Z", "shell.execute_reply": "2025-03-25T08:37:18.049332Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\n", "Gene annotation preview:\n", "Columns in gene annotation: ['ID', 'probeset_id', 'seqname', 'strand', 'start', 'stop', 'total_probes', 'gene_assignment', 'mrna_assignment', 'swissprot', 'unigene', 'GO_biological_process', 'GO_cellular_component', 'GO_molecular_function', 'pathway', 'protein_domains', 'crosshyb_type', 'category', 'GB_ACC', 'SPOT_ID']\n", "{'ID': ['16657436', '16657440', '16657445', '16657447', '16657450'], 'probeset_id': ['16657436', '16657440', '16657445', '16657447', '16657450'], 'seqname': ['chr1', 'chr1', 'chr1', 'chr1', 'chr1'], 'strand': ['+', '+', '+', '+', '+'], 'start': ['12190', '29554', '69091', '160446', '317811'], 'stop': ['13639', '31109', '70008', '161525', '328581'], 'total_probes': [25.0, 28.0, 8.0, 13.0, 36.0], 'gene_assignment': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_051985 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_045117 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_051986 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000559159 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000562189 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000513886 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000515242 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000518655 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000515173 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000545636 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000450305 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000560040 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000430178 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000538648 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000535848 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000457993 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000437401 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000426146 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // --- /// ENST00000445777 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000421620 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // ---', 'ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501', '---', 'AK302511 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK294489 // LOC729737 // uncharacterized LOC729737 // 1p36.33 // 729737 /// AK303380 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK316554 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK316556 // LOC100132062 // uncharacterized LOC100132062 // 5q35.3 // 100132062 /// AK302573 // LOC729737 // uncharacterized LOC729737 // 1p36.33 // 729737 /// AK123446 // LOC441124 // uncharacterized LOC441124 // 1q42.11 // 441124 /// ENST00000425496 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000425496 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000425496 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000425496 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000456623 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000456623 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000456623 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000456623 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000418377 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000418377 // LOC100288102 // uncharacterized LOC100288102 // 1q42.11 // 100288102 /// ENST00000418377 // LOC731275 // uncharacterized LOC731275 // 1q43 // 731275 /// ENST00000534867 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000534867 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000534867 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000534867 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000544678 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000544678 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000544678 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000544678 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000544678 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000544678 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326 /// ENST00000419160 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000419160 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000419160 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000419160 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000432964 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000432964 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000432964 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000432964 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000423728 // LOC100506479 // uncharacterized LOC100506479 // --- // 100506479 /// ENST00000423728 // LOC100289306 // uncharacterized LOC100289306 // 7p11.2 // 100289306 /// ENST00000423728 // LOC100287894 // uncharacterized LOC100287894 // 7q11.21 // 100287894 /// ENST00000423728 // FLJ45445 // uncharacterized LOC399844 // 19p13.3 // 399844 /// ENST00000457364 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000457364 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000457364 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000457364 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000457364 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000457364 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326 /// ENST00000438516 // LOC100653346 // uncharacterized LOC100653346 // --- // 100653346 /// ENST00000438516 // LOC100653241 // uncharacterized LOC100653241 // --- // 100653241 /// ENST00000438516 // LOC100652945 // uncharacterized LOC100652945 // --- // 100652945 /// ENST00000438516 // LOC100508632 // uncharacterized LOC100508632 // --- // 100508632 /// ENST00000438516 // LOC100132050 // uncharacterized LOC100132050 // 7p11.2 // 100132050 /// ENST00000438516 // LOC100128326 // putative uncharacterized protein FLJ44672-like // 7p11.2 // 100128326'], 'mrna_assignment': ['NR_046018 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 (DDX11L1), non-coding RNA. // chr1 // 100 // 100 // 25 // 25 // 0 /// NR_034090 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 (DDX11L9), transcript variant 1, non-coding RNA. // chr1 // 96 // 100 // 24 // 25 // 0 /// NR_051985 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 (DDX11L9), transcript variant 2, non-coding RNA. // chr1 // 96 // 100 // 24 // 25 // 0 /// NR_045117 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 (DDX11L10), non-coding RNA. // chr1 // 92 // 96 // 22 // 24 // 0 /// NR_024004 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 (DDX11L2), transcript variant 1, non-coding RNA. // chr1 // 83 // 96 // 20 // 24 // 0 /// NR_024005 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 (DDX11L2), transcript variant 2, non-coding RNA. // chr1 // 83 // 96 // 20 // 24 // 0 /// NR_051986 // RefSeq // Homo sapiens DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 (DDX11L5), non-coding RNA. // chr1 // 50 // 96 // 12 // 24 // 0 /// TCONS_l2_00010384-XLOC_l2_005087 // Broad TUCP // linc-SNRNP25-2 chr16:+:61554-64041 // chr1 // 92 // 96 // 22 // 24 // 0 /// TCONS_l2_00010385-XLOC_l2_005087 // Broad TUCP // linc-SNRNP25-2 chr16:+:61554-64090 // chr1 // 92 // 96 // 22 // 24 // 0 /// TCONS_l2_00030644-XLOC_l2_015857 // Broad TUCP // linc-TMLHE chrX:-:155255810-155257756 // chr1 // 50 // 96 // 12 // 24 // 0 /// TCONS_l2_00028588-XLOC_l2_014685 // Broad TUCP // linc-DOCK8-2 chr9:+:11235-13811 // chr1 // 50 // 64 // 8 // 16 // 0 /// TCONS_l2_00030643-XLOC_l2_015857 // Broad TUCP // linc-TMLHE chrX:-:155255810-155257756 // chr1 // 50 // 64 // 8 // 16 // 0 /// ENST00000456328 // ENSEMBL // cdna:known chromosome:GRCh37:1:11869:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000559159 // ENSEMBL // cdna:known chromosome:GRCh37:15:102516761:102519296:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000562189 // ENSEMBL // cdna:known chromosome:GRCh37:15:102516761:102519296:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000513886 // ENSEMBL // cdna:known chromosome:GRCh37:16:61555:64090:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:processed_transcript // chr1 // 92 // 96 // 22 // 24 // 0 /// AK125998 // GenBank // Homo sapiens cDNA FLJ44010 fis, clone TESTI4024344. // chr1 // 50 // 96 // 12 // 24 // 0 /// BC070227 // GenBank // Homo sapiens similar to DEAD/H (Asp-Glu-Ala-Asp/His) box polypeptide 11 isoform 1, mRNA (cDNA clone IMAGE:6103207). // chr1 // 100 // 44 // 11 // 11 // 0 /// ENST00000515242 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:11872:14412:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000518655 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:11874:14409:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 100 // 25 // 25 // 0 /// ENST00000515173 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102516758:102519298:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 96 // 100 // 24 // 25 // 0 /// ENST00000545636 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:16:61553:64093:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 92 // 96 // 22 // 24 // 0 /// ENST00000450305 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:12010:13670:1 gene:ENSG00000223972 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 100 // 68 // 17 // 17 // 0 /// ENST00000560040 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102517497:102518994:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 94 // 68 // 16 // 17 // 0 /// ENST00000430178 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:16:61861:63351:1 gene:ENSG00000233614 gene_biotype:pseudogene transcript_biotype:transcribed_unprocessed_pseudogene // chr1 // 88 // 64 // 14 // 16 // 0 /// ENST00000538648 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:15:102517351:102517622:-1 gene:ENSG00000248472 gene_biotype:pseudogene transcript_biotype:pseudogene // chr1 // 100 // 16 // 4 // 4 // 0 /// ENST00000535848 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356606:114359144:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 83 // 96 // 20 // 24 // 0 /// ENST00000457993 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356613:114358838:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 85 // 80 // 17 // 20 // 0 /// ENST00000437401 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:2:114356613:114358838:-1 gene:ENSG00000236397 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 80 // 80 // 16 // 20 // 0 /// ENST00000426146 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:9:11987:14522:1 gene:ENSG00000236875 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 96 // 12 // 24 // 0 /// ENST00000445777 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:X:155255323:155257848:-1 gene:ENSG00000227159 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 96 // 12 // 24 // 0 /// ENST00000507418 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:X:155255329:155257542:-1 gene:ENSG00000227159 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 50 // 64 // 8 // 16 // 0 /// ENST00000421620 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:9:12134:13439:1 gene:ENSG00000236875 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 12 // 3 // 3 // 0 /// GENSCAN00000003613 // ENSEMBL // cdna:genscan chromosome:GRCh37:15:102517021:102518980:-1 transcript_biotype:protein_coding // chr1 // 100 // 52 // 13 // 13 // 0 /// GENSCAN00000026650 // ENSEMBL // cdna:genscan chromosome:GRCh37:1:12190:14149:1 transcript_biotype:protein_coding // chr1 // 100 // 52 // 13 // 13 // 0 /// GENSCAN00000029586 // ENSEMBL // cdna:genscan chromosome:GRCh37:16:61871:63830:1 transcript_biotype:protein_coding // chr1 // 100 // 48 // 12 // 12 // 0 /// ENST00000535849 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:12:92239:93430:-1 gene:ENSG00000256263 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// ENST00000575871 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:HG858_PATCH:62310:63501:1 gene:ENSG00000262195 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// ENST00000572276 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:HSCHR12_1_CTG1:62310:63501:1 gene:ENSG00000263289 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 38 // 32 // 3 // 8 // 1 /// GENSCAN00000048516 // ENSEMBL // cdna:genscan chromosome:GRCh37:HG858_PATCH:62740:64276:1 transcript_biotype:protein_coding // chr1 // 25 // 48 // 3 // 12 // 1 /// GENSCAN00000048612 // ENSEMBL // cdna:genscan chromosome:GRCh37:HSCHR12_1_CTG1:62740:64276:1 transcript_biotype:protein_coding // chr1 // 25 // 48 // 3 // 12 // 1', 'ENST00000473358 // ENSEMBL // cdna:known chromosome:GRCh37:1:29554:31097:1 gene:ENSG00000243485 gene_biotype:antisense transcript_biotype:antisense // chr1 // 100 // 71 // 20 // 20 // 0', 'NM_001005484 // RefSeq // Homo sapiens olfactory receptor, family 4, subfamily F, member 5 (OR4F5), mRNA. // chr1 // 100 // 100 // 8 // 8 // 0 /// ENST00000335137 // ENSEMBL // cdna:known chromosome:GRCh37:1:69091:70008:1 gene:ENSG00000186092 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 100 // 8 // 8 // 0', 'TCONS_00000119-XLOC_000001 // Rinn lincRNA // linc-OR4F16-10 chr1:+:160445-161525 // chr1 // 100 // 100 // 13 // 13 // 0', 'AK302511 // GenBank // Homo sapiens cDNA FLJ61476 complete cds. // chr1 // 92 // 33 // 11 // 12 // 0 /// AK294489 // GenBank // Homo sapiens cDNA FLJ52615 complete cds. // chr1 // 77 // 36 // 10 // 13 // 0 /// AK303380 // GenBank // Homo sapiens cDNA FLJ53527 complete cds. // chr1 // 100 // 14 // 5 // 5 // 0 /// AK316554 // GenBank // Homo sapiens cDNA, FLJ79453 complete cds. // chr1 // 100 // 11 // 4 // 4 // 0 /// AK316556 // GenBank // Homo sapiens cDNA, FLJ79455 complete cds. // chr1 // 100 // 11 // 4 // 4 // 0 /// AK302573 // GenBank // Homo sapiens cDNA FLJ52612 complete cds. // chr1 // 80 // 14 // 4 // 5 // 0 /// TCONS_l2_00002815-XLOC_l2_001399 // Broad TUCP // linc-PLD5-5 chr1:-:243219130-243221165 // chr1 // 92 // 33 // 11 // 12 // 0 /// TCONS_l2_00001802-XLOC_l2_001332 // Broad TUCP // linc-TP53BP2-3 chr1:-:224139117-224140327 // chr1 // 100 // 14 // 5 // 5 // 0 /// TCONS_l2_00001804-XLOC_l2_001332 // Broad TUCP // linc-TP53BP2-3 chr1:-:224139117-224142371 // chr1 // 100 // 14 // 5 // 5 // 0 /// TCONS_00000120-XLOC_000002 // Rinn lincRNA // linc-OR4F16-9 chr1:+:320161-321056 // chr1 // 100 // 11 // 4 // 4 // 0 /// TCONS_l2_00002817-XLOC_l2_001399 // Broad TUCP // linc-PLD5-5 chr1:-:243220177-243221150 // chr1 // 100 // 6 // 2 // 2 // 0 /// TCONS_00000437-XLOC_000658 // Rinn lincRNA // linc-ZNF692-6 chr1:-:139789-140339 // chr1 // 100 // 6 // 2 // 2 // 0 /// AK299469 // GenBank // Homo sapiens cDNA FLJ52610 complete cds. // chr1 // 100 // 33 // 12 // 12 // 0 /// AK302889 // GenBank // Homo sapiens cDNA FLJ54896 complete cds. // chr1 // 100 // 22 // 8 // 8 // 0 /// AK123446 // GenBank // Homo sapiens cDNA FLJ41452 fis, clone BRSTN2010363. // chr1 // 100 // 19 // 7 // 7 // 0 /// ENST00000425496 // ENSEMBL // cdna:known chromosome:GRCh37:1:324756:328453:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 33 // 13 // 12 // 0 /// ENST00000456623 // ENSEMBL // cdna:known chromosome:GRCh37:1:324515:326852:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 33 // 12 // 12 // 0 /// ENST00000418377 // ENSEMBL // cdna:known chromosome:GRCh37:1:243219131:243221165:-1 gene:ENSG00000214837 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 92 // 33 // 11 // 12 // 0 /// ENST00000534867 // ENSEMBL // cdna:known chromosome:GRCh37:1:324438:325896:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 28 // 10 // 10 // 0 /// ENST00000544678 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751053:180752511:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 22 // 8 // 8 // 0 /// ENST00000419160 // ENSEMBL // cdna:known chromosome:GRCh37:1:322732:324955:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 17 // 6 // 6 // 0 /// ENST00000432964 // ENSEMBL // cdna:known chromosome:GRCh37:1:320162:321056:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 11 // 4 // 4 // 0 /// ENST00000423728 // ENSEMBL // cdna:known chromosome:GRCh37:1:320162:324461:1 gene:ENSG00000237094 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 11 // 4 // 4 // 0 /// BC092421 // GenBank // Homo sapiens cDNA clone IMAGE:30378758. // chr1 // 100 // 33 // 12 // 12 // 0 /// ENST00000426316 // ENSEMBL // cdna:known chromosome:GRCh37:1:317811:328455:1 gene:ENSG00000240876 gene_biotype:processed_transcript transcript_biotype:processed_transcript // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000465971 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:7:128291239:128292388:1 gene:ENSG00000243302 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 31 // 11 // 11 // 0 /// ENST00000535314 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:7:128291243:128292355:1 gene:ENSG00000243302 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 31 // 11 // 11 // 0 /// ENST00000423372 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:134901:139379:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000435839 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:137283:139620:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000537461 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:138239:139697:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 19 // 7 // 7 // 0 /// ENST00000494149 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:135247:138039:-1 gene:ENSG00000237683 gene_biotype:pseudogene transcript_biotype:processed_pseudogene // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000514436 // ENSEMBL // cdna:pseudogene chromosome:GRCh37:1:326096:328112:1 gene:ENSG00000250575 gene_biotype:pseudogene transcript_biotype:unprocessed_pseudogene // chr1 // 100 // 8 // 3 // 3 // 0 /// ENST00000457364 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751371:180755068:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 28 // 11 // 10 // 0 /// ENST00000438516 // ENSEMBL // cdna:known chromosome:GRCh37:5:180751130:180753467:1 gene:ENSG00000238035 gene_biotype:protein_coding transcript_biotype:protein_coding // chr1 // 100 // 28 // 10 // 10 // 0 /// ENST00000526704 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:129531:139099:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 93 // 42 // 14 // 15 // 0 /// ENST00000540375 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:127115:131056:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 28 // 11 // 10 // 0 /// ENST00000457006 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:128960:131297:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 90 // 28 // 9 // 10 // 0 /// ENST00000427071 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:130207:131297:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 25 // 9 // 9 // 0 /// ENST00000542435 // ENSEMBL // ensembl_havana_lincrna:lincRNA chromosome:GRCh37:11:129916:131374:-1 gene:ENSG00000230724 gene_biotype:lincRNA transcript_biotype:processed_transcript // chr1 // 100 // 22 // 8 // 8 // 0'], 'swissprot': ['NR_046018 // B7ZGW9 /// NR_046018 // B7ZGX0 /// NR_046018 // B7ZGX2 /// NR_046018 // B7ZGX3 /// NR_046018 // B7ZGX5 /// NR_046018 // B7ZGX6 /// NR_046018 // B7ZGX7 /// NR_046018 // B7ZGX8 /// NR_046018 // B7ZGX9 /// NR_046018 // B7ZGY0 /// NR_034090 // B7ZGW9 /// NR_034090 // B7ZGX0 /// NR_034090 // B7ZGX2 /// NR_034090 // B7ZGX3 /// NR_034090 // B7ZGX5 /// NR_034090 // B7ZGX6 /// NR_034090 // B7ZGX7 /// NR_034090 // B7ZGX8 /// NR_034090 // B7ZGX9 /// NR_034090 // B7ZGY0 /// NR_051985 // B7ZGW9 /// NR_051985 // B7ZGX0 /// NR_051985 // B7ZGX2 /// NR_051985 // B7ZGX3 /// NR_051985 // B7ZGX5 /// NR_051985 // B7ZGX6 /// NR_051985 // B7ZGX7 /// NR_051985 // B7ZGX8 /// NR_051985 // B7ZGX9 /// NR_051985 // B7ZGY0 /// NR_045117 // B7ZGW9 /// NR_045117 // B7ZGX0 /// NR_045117 // B7ZGX2 /// NR_045117 // B7ZGX3 /// NR_045117 // B7ZGX5 /// NR_045117 // B7ZGX6 /// NR_045117 // B7ZGX7 /// NR_045117 // B7ZGX8 /// NR_045117 // B7ZGX9 /// NR_045117 // B7ZGY0 /// NR_024005 // B7ZGW9 /// NR_024005 // B7ZGX0 /// NR_024005 // B7ZGX2 /// NR_024005 // B7ZGX3 /// NR_024005 // B7ZGX5 /// NR_024005 // B7ZGX6 /// NR_024005 // B7ZGX7 /// NR_024005 // B7ZGX8 /// NR_024005 // B7ZGX9 /// NR_024005 // B7ZGY0 /// NR_051986 // B7ZGW9 /// NR_051986 // B7ZGX0 /// NR_051986 // B7ZGX2 /// NR_051986 // B7ZGX3 /// NR_051986 // B7ZGX5 /// NR_051986 // B7ZGX6 /// NR_051986 // B7ZGX7 /// NR_051986 // B7ZGX8 /// NR_051986 // B7ZGX9 /// NR_051986 // B7ZGY0 /// AK125998 // Q6ZU42 /// AK125998 // B7ZGW9 /// AK125998 // B7ZGX0 /// AK125998 // B7ZGX2 /// AK125998 // B7ZGX3 /// AK125998 // B7ZGX5 /// AK125998 // B7ZGX6 /// AK125998 // B7ZGX7 /// AK125998 // B7ZGX8 /// AK125998 // B7ZGX9 /// AK125998 // B7ZGY0', '---', '---', '---', 'AK302511 // B4DYM5 /// AK294489 // B4DGA0 /// AK294489 // Q6ZSN7 /// AK303380 // B4E0H4 /// AK303380 // Q6ZQS4 /// AK303380 // A8E4K2 /// AK316554 // B4E3X0 /// AK316554 // Q6ZSN7 /// AK316556 // B4E3X2 /// AK316556 // Q6ZSN7 /// AK302573 // B7Z7W4 /// AK302573 // Q6ZQS4 /// AK302573 // A8E4K2 /// AK299469 // B7Z5V7 /// AK299469 // Q6ZSN7 /// AK302889 // B7Z846 /// AK302889 // Q6ZSN7 /// AK123446 // B3KVU4'], 'unigene': ['NR_046018 // Hs.714157 // testis| normal| adult /// NR_034090 // Hs.644359 // blood| normal| adult /// NR_051985 // Hs.644359 // blood| normal| adult /// NR_045117 // Hs.592089 // brain| glioma /// NR_024004 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult /// NR_024005 // Hs.712940 // bladder| bone marrow| brain| embryonic tissue| intestine| mammary gland| muscle| pharynx| placenta| prostate| skin| spleen| stomach| testis| thymus| breast (mammary gland) tumor| gastrointestinal tumor| glioma| non-neoplasia| normal| prostate cancer| skin tumor| soft tissue/muscle tissue tumor|embryoid body| adult /// NR_051986 // Hs.719844 // brain| normal /// ENST00000456328 // Hs.714157 // testis| normal| adult /// ENST00000559159 // Hs.644359 // blood| normal| adult /// ENST00000562189 // Hs.644359 // blood| normal| adult /// ENST00000513886 // Hs.592089 // brain| glioma /// ENST00000515242 // Hs.714157 // testis| normal| adult /// ENST00000518655 // Hs.714157 // testis| normal| adult /// ENST00000515173 // Hs.644359 // blood| normal| adult /// ENST00000545636 // Hs.592089 // brain| glioma /// ENST00000450305 // Hs.714157 // testis| normal| adult /// ENST00000560040 // Hs.644359 // blood| normal| adult /// ENST00000430178 // Hs.592089 // brain| glioma /// ENST00000538648 // Hs.644359 // blood| normal| adult', '---', 'NM_001005484 // Hs.554500 // --- /// ENST00000335137 // Hs.554500 // ---', '---', 'AK302511 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK294489 // Hs.534942 // blood| brain| embryonic tissue| intestine| lung| mammary gland| mouth| ovary| pancreas| pharynx| placenta| spleen| stomach| testis| thymus| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor|embryoid body| blastocyst| fetus| adult /// AK294489 // Hs.734488 // blood| brain| esophagus| intestine| kidney| lung| mammary gland| mouth| placenta| prostate| testis| thymus| thyroid| uterus| breast (mammary gland) tumor| colorectal tumor| esophageal tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| adult /// AK303380 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK316554 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK316556 // Hs.732199 // ascites| blood| brain| connective tissue| embryonic tissue| eye| intestine| kidney| larynx| lung| ovary| placenta| prostate| stomach| testis| thymus| uterus| chondrosarcoma| colorectal tumor| gastrointestinal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor| fetus| adult /// AK302573 // Hs.534942 // blood| brain| embryonic tissue| intestine| lung| mammary gland| mouth| ovary| pancreas| pharynx| placenta| spleen| stomach| testis| thymus| trachea| breast (mammary gland) tumor| colorectal tumor| head and neck tumor| leukemia| lung tumor| normal| ovarian tumor|embryoid body| blastocyst| fetus| adult /// AK302573 // Hs.734488 // blood| brain| esophagus| intestine| kidney| lung| mammary gland| mouth| placenta| prostate| testis| thymus| thyroid| uterus| breast (mammary gland) tumor| colorectal tumor| esophageal tumor| head and neck tumor| kidney tumor| leukemia| lung tumor| normal| adult /// AK123446 // Hs.520589 // bladder| blood| bone| brain| embryonic tissue| intestine| kidney| liver| lung| lymph node| ovary| pancreas| parathyroid| placenta| testis| thyroid| uterus| colorectal tumor| glioma| head and neck tumor| kidney tumor| leukemia| liver tumor| normal| ovarian tumor| uterine tumor|embryoid body| fetus| adult /// ENST00000425496 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000425496 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000456623 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000456623 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000534867 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000534867 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000419160 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000419160 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000432964 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000432964 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult /// ENST00000423728 // Hs.356758 // blood| bone| brain| cervix| connective tissue| embryonic tissue| intestine| kidney| lung| mammary gland| mouth| pancreas| pharynx| placenta| prostate| spleen| stomach| testis| trachea| uterus| vascular| breast (mammary gland) tumor| chondrosarcoma| colorectal tumor| gastrointestinal tumor| glioma| head and neck tumor| leukemia| lung tumor| normal| uterine tumor| adult /// ENST00000423728 // Hs.733048 // ascites| bladder| blood| brain| embryonic tissue| eye| intestine| kidney| larynx| liver| lung| mammary gland| mouth| pancreas| placenta| prostate| skin| stomach| testis| thymus| thyroid| trachea| uterus| bladder carcinoma| breast (mammary gland) tumor| colorectal tumor| gastrointestinal tumor| head and neck tumor| kidney tumor| leukemia| liver tumor| lung tumor| normal| pancreatic tumor| prostate cancer| retinoblastoma| skin tumor| soft tissue/muscle tissue tumor| uterine tumor|embryoid body| blastocyst| fetus| adult'], 'GO_biological_process': ['---', '---', '---', '---', '---'], 'GO_cellular_component': ['---', '---', 'NM_001005484 // GO:0005886 // plasma membrane // traceable author statement /// NM_001005484 // GO:0016021 // integral to membrane // inferred from electronic annotation /// ENST00000335137 // GO:0005886 // plasma membrane // traceable author statement /// ENST00000335137 // GO:0016021 // integral to membrane // inferred from electronic annotation', '---', '---'], 'GO_molecular_function': ['---', '---', 'NM_001005484 // GO:0004930 // G-protein coupled receptor activity // inferred from electronic annotation /// NM_001005484 // GO:0004984 // olfactory receptor activity // inferred from electronic annotation /// ENST00000335137 // GO:0004930 // G-protein coupled receptor activity // inferred from electronic annotation /// ENST00000335137 // GO:0004984 // olfactory receptor activity // inferred from electronic annotation', '---', '---'], 'pathway': ['---', '---', '---', '---', '---'], 'protein_domains': ['---', '---', 'ENST00000335137 // Pfam // IPR000276 // GPCR, rhodopsin-like, 7TM /// ENST00000335137 // Pfam // IPR019424 // 7TM GPCR, olfactory receptor/chemoreceptor Srsx', '---', '---'], 'crosshyb_type': ['3', '3', '3', '3', '3'], 'category': ['main', 'main', 'main', 'main', 'main'], 'GB_ACC': ['NR_046018', nan, 'NM_001005484', nan, 'AK302511'], 'SPOT_ID': [nan, 'ENST00000473358', nan, 'TCONS_00000119-XLOC_000001', nan]}\n", "\n", "Sample from gene_assignment column (first entry):\n", "NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_051985 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_045117 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_051986 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000559159 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000562189 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000513886 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000515242 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000518655 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000515173 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000545636 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000450305 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000560040 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000430178 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000538648 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000535848 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000457993 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000437401 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000426146 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // --- /// ENST00000445777 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000421620 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // ---\n", "\n", "Extracted gene symbols from sample:\n", "['DDX11L1', 'DEAD', 'DDX11L9', 'DDX11L10', 'DDX11L2', 'DDX11L5', 'DDX11L16']\n", "\n", "Will use 'ID' for probe IDs and 'gene_assignment' for gene symbols in mapping step\n", "\n", "Mapping data shape: (53617, 2)\n", "First few rows of mapping data:\n", "{'ID': ['16657436', '16657440', '16657445'], 'Gene': ['NR_046018 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// NR_034090 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_051985 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// NR_045117 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// NR_024004 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_024005 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // 2q13 // 84771 /// NR_051986 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // 9p24.3 // 100287596 /// ENST00000456328 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000559159 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000562189 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000513886 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000515242 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000518655 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000515173 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000545636 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000450305 // DDX11L1 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 1 // 1p36.33 // 100287102 /// ENST00000560040 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000430178 // DDX11L10 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 10 // 16p13.3 // 100287029 /// ENST00000538648 // DDX11L9 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 9 // 15q26.3 // 100288486 /// ENST00000535848 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000457993 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000437401 // DDX11L2 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 2 // --- // --- /// ENST00000426146 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // --- /// ENST00000445777 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000507418 // DDX11L16 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 16 // --- // --- /// ENST00000421620 // DDX11L5 // DEAD/H (Asp-Glu-Ala-Asp/His) box helicase 11 like 5 // --- // ---', 'ENST00000473358 // MIR1302-11 // microRNA 1302-11 // --- // 100422919 /// ENST00000473358 // MIR1302-10 // microRNA 1302-10 // --- // 100422834 /// ENST00000473358 // MIR1302-9 // microRNA 1302-9 // --- // 100422831 /// ENST00000473358 // MIR1302-2 // microRNA 1302-2 // --- // 100302278', 'NM_001005484 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501 /// ENST00000335137 // OR4F5 // olfactory receptor, family 4, subfamily F, member 5 // 1p36.33 // 79501']}\n" ] } ], "source": [ "# 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file.\n", "gene_annotation = get_gene_annotation(soft_file)\n", "\n", "# 2. Analyze the gene annotation dataframe to identify which columns contain the gene identifiers and gene symbols\n", "print(\"\\nGene annotation preview:\")\n", "print(f\"Columns in gene annotation: {gene_annotation.columns.tolist()}\")\n", "print(preview_df(gene_annotation, n=5))\n", "\n", "# Examine a sample of the gene_assignment column to verify it contains gene symbols\n", "print(\"\\nSample from gene_assignment column (first entry):\")\n", "if 'gene_assignment' in gene_annotation.columns:\n", " sample_gene_assignment = gene_annotation['gene_assignment'].iloc[0]\n", " print(sample_gene_assignment)\n", " \n", " # Extract gene symbols from the sample to verify\n", " sample_symbols = extract_human_gene_symbols(sample_gene_assignment)\n", " print(\"\\nExtracted gene symbols from sample:\")\n", " print(sample_symbols)\n", "\n", "# Define columns for gene mapping\n", "prob_col = 'ID'\n", "gene_col = 'gene_assignment'\n", "print(f\"\\nWill use '{prob_col}' for probe IDs and '{gene_col}' for gene symbols in mapping step\")\n", "\n", "# Test extracting mapping data\n", "mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)\n", "print(f\"\\nMapping data shape: {mapping_data.shape}\")\n", "print(\"First few rows of mapping data:\")\n", "print(preview_df(mapping_data, n=3))\n" ] }, { "cell_type": "markdown", "id": "fe2a497d", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": 7, "id": "fc38feb2", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:18.051974Z", "iopub.status.busy": "2025-03-25T08:37:18.051833Z", "iopub.status.idle": "2025-03-25T08:37:18.768082Z", "shell.execute_reply": "2025-03-25T08:37:18.767478Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene expression data converted from probes to genes.\n", "Shape of gene expression data: (23274, 32)\n", "First 5 gene symbols:\n", "Index(['A1BG', 'A1BG-AS1', 'A1CF', 'A2M', 'A2M-AS1'], dtype='object', name='Gene')\n", "First 5 columns (samples):\n", "Index(['GSM3673551', 'GSM3673552', 'GSM3673553', 'GSM3673554', 'GSM3673555'], dtype='object')\n" ] } ], "source": [ "# Convert probe-level measurements to gene-level measurements by applying the gene mapping\n", "# Apply the gene mapping to get a dataframe with genes as rows and samples as columns\n", "gene_data = apply_gene_mapping(gene_data, mapping_data)\n", "\n", "# Ensure no empty symbols\n", "gene_data = gene_data[gene_data.index.notnull() & (gene_data.index != '')]\n", "\n", "# Normalize gene symbols to standardize and combine rows with the same gene\n", "gene_data = normalize_gene_symbols_in_index(gene_data)\n", "\n", "# Print information about the transformed data\n", "print(f\"Gene expression data converted from probes to genes.\")\n", "print(f\"Shape of gene expression data: {gene_data.shape}\")\n", "print(f\"First 5 gene symbols:\")\n", "print(gene_data.index[:5])\n", "print(f\"First 5 columns (samples):\")\n", "print(gene_data.columns[:5])\n" ] }, { "cell_type": "markdown", "id": "c2173195", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": 8, "id": "c08a705b", "metadata": { "execution": { "iopub.execute_input": "2025-03-25T08:37:18.770029Z", "iopub.status.busy": "2025-03-25T08:37:18.769859Z", "iopub.status.idle": "2025-03-25T08:37:26.593214Z", "shell.execute_reply": "2025-03-25T08:37:26.592566Z" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Gene expression data saved to ../../output/preprocess/Depression/gene_data/GSE128387.csv\n", "Selected clinical data shape: (3, 32)\n", "Clinical data preview:\n", "{'GSM3673551': [1.0, 16.0, 0.0], 'GSM3673552': [1.0, 13.0, 0.0], 'GSM3673553': [1.0, 16.0, 0.0], 'GSM3673554': [1.0, 12.0, 0.0], 'GSM3673555': [1.0, 16.0, 0.0], 'GSM3673556': [1.0, 16.0, 0.0], 'GSM3673557': [1.0, 14.0, 0.0], 'GSM3673558': [1.0, 13.0, 0.0], 'GSM3673559': [1.0, 16.0, 0.0], 'GSM3673560': [1.0, 17.0, 0.0], 'GSM3673561': [1.0, 13.0, 0.0], 'GSM3673562': [1.0, 16.0, 0.0], 'GSM3673563': [1.0, 15.0, 1.0], 'GSM3673564': [1.0, 15.0, 0.0], 'GSM3673565': [1.0, 15.0, 0.0], 'GSM3673566': [1.0, 14.0, 0.0], 'GSM3673567': [1.0, 16.0, 0.0], 'GSM3673568': [1.0, 13.0, 0.0], 'GSM3673569': [1.0, 16.0, 0.0], 'GSM3673570': [1.0, 12.0, 0.0], 'GSM3673571': [1.0, 16.0, 0.0], 'GSM3673572': [1.0, 16.0, 0.0], 'GSM3673573': [1.0, 14.0, 0.0], 'GSM3673574': [1.0, 13.0, 0.0], 'GSM3673575': [1.0, 16.0, 0.0], 'GSM3673576': [1.0, 17.0, 0.0], 'GSM3673577': [1.0, 13.0, 0.0], 'GSM3673578': [1.0, 16.0, 0.0], 'GSM3673579': [1.0, 15.0, 1.0], 'GSM3673580': [1.0, 15.0, 0.0], 'GSM3673581': [1.0, 16.0, 1.0], 'GSM3673582': [1.0, 15.0, 0.0]}\n", "Clinical data saved to ../../output/preprocess/Depression/clinical_data/GSE128387.csv\n", "Linked data shape: (32, 23277)\n", "Linked data preview (first 5 rows, 5 columns):\n", " Depression Age Gender A1BG A1BG-AS1\n", "GSM3673551 1.0 16.0 0.0 2.890000 1.530000\n", "GSM3673552 1.0 13.0 0.0 2.753333 1.403333\n", "GSM3673553 1.0 16.0 0.0 2.400000 1.390000\n", "GSM3673554 1.0 12.0 0.0 3.011667 1.586667\n", "GSM3673555 1.0 16.0 0.0 2.950000 1.550000\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "Data shape after handling missing values: (32, 23277)\n", "Quartiles for 'Depression':\n", " 25%: 1.0\n", " 50% (Median): 1.0\n", " 75%: 1.0\n", "Min: 1.0\n", "Max: 1.0\n", "The distribution of the feature 'Depression' in this dataset is severely biased.\n", "\n", "Quartiles for 'Age':\n", " 25%: 13.75\n", " 50% (Median): 15.0\n", " 75%: 16.0\n", "Min: 12.0\n", "Max: 17.0\n", "The distribution of the feature 'Age' in this dataset is fine.\n", "\n", "For the feature 'Gender', the least common label is '1.0' with 3 occurrences. This represents 9.38% of the dataset.\n", "The distribution of the feature 'Gender' in this dataset is severely biased.\n", "\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "A new JSON file was created at: ../../output/preprocess/Depression/cohort_info.json\n", "Dataset is not usable for analysis. No linked data file saved.\n" ] } ], "source": [ "# 1. We already normalized gene symbols in the gene expression data in step 6\n", "# Save the normalized gene data to file\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link the clinical and genetic data\n", "# First, let's extract the clinical features properly\n", "# Based on the sample characteristics dictionary from step 1:\n", "# {0: ['tissue: Blood'], 1: ['illness: Major Depressive Disorder'], 2: ['age: 16', 'age: 13', 'age: 12', 'age: 14', 'age: 17', 'age: 15'], 3: ['Sex: female', 'Sex: male']}\n", "\n", "def convert_trait(value):\n", " \"\"\"Convert depression status to binary format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"major depressive disorder\" in value:\n", " return 1 # Has depression\n", " return 0 # Control/no depression\n", "\n", "def convert_age(value):\n", " \"\"\"Convert age data to continuous format.\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip()\n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "def convert_gender(value):\n", " \"\"\"Convert gender data to binary format (0 for female, 1 for male).\"\"\"\n", " if not isinstance(value, str):\n", " return None\n", " value = value.split(\": \")[-1].strip().lower()\n", " if \"female\" in value:\n", " return 0\n", " elif \"male\" in value:\n", " return 1\n", " return None\n", "\n", "# Get clinical data using the correct row index identified in step 1\n", "selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=1, # Using row 1 for depression status (major depressive disorder)\n", " convert_trait=convert_trait,\n", " age_row=2, # Age data is in row 2\n", " convert_age=convert_age,\n", " gender_row=3, # Gender data is in row 3\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(f\"Selected clinical data shape: {selected_clinical_df.shape}\")\n", "print(\"Clinical data preview:\")\n", "print(preview_df(selected_clinical_df))\n", "\n", "# Save clinical data for future reference\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "selected_clinical_df.to_csv(out_clinical_data_file)\n", "print(f\"Clinical data saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, 5 columns):\")\n", "print(linked_data.iloc[:5, :5] if not linked_data.empty else \"Linked data is empty\")\n", "\n", "# 3. Handle missing values\n", "linked_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {linked_data.shape}\")\n", "\n", "# 4. Check for bias in features\n", "is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)\n", "\n", "# 5. Validate and save cohort information\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=True,\n", " is_trait_available=True,\n", " is_biased=is_biased,\n", " df=linked_data,\n", " note=\"Dataset contains gene expression data from blood samples of children and adolescents with Major Depressive Disorder, before and after Fluoxetine treatment.\"\n", ")\n", "\n", "# 6. Save the linked data if usable\n", "if is_usable:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " linked_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Dataset is not usable for analysis. No linked data file saved.\")" ] } ], "metadata": { "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.16" } }, "nbformat": 4, "nbformat_minor": 5 }