{ "cells": [ { "cell_type": "code", "execution_count": null, "id": "bbc640a5", "metadata": {}, "outputs": [], "source": [ "import sys\n", "import os\n", "sys.path.append(os.path.abspath(os.path.join(os.getcwd(), '../..')))\n", "\n", "# Path Configuration\n", "from tools.preprocess import *\n", "\n", "# Processing context\n", "trait = \"Gastroesophageal_reflux_disease_(GERD)\"\n", "cohort = \"GSE77563\"\n", "\n", "# Input paths\n", "in_trait_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)\"\n", "in_cohort_dir = \"../../input/GEO/Gastroesophageal_reflux_disease_(GERD)/GSE77563\"\n", "\n", "# Output paths\n", "out_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv\"\n", "out_gene_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv\"\n", "out_clinical_data_file = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/clinical_data/GSE77563.csv\"\n", "json_path = \"../../output/preprocess/Gastroesophageal_reflux_disease_(GERD)/cohort_info.json\"\n" ] }, { "cell_type": "markdown", "id": "e790ff46", "metadata": {}, "source": [ "### Step 1: Initial Data Loading" ] }, { "cell_type": "code", "execution_count": null, "id": "d39fbcc3", "metadata": {}, "outputs": [], "source": [ "from tools.preprocess import *\n", "# 1. Identify the paths to the SOFT file and the matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. Read the matrix file to obtain background information and sample characteristics data\n", "background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design']\n", "clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1']\n", "background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes)\n", "\n", "# 3. Obtain the sample characteristics dictionary from the clinical dataframe\n", "sample_characteristics_dict = get_unique_values_by_row(clinical_data)\n", "\n", "# 4. Explicitly print out all the background information and the sample characteristics dictionary\n", "print(\"Background Information:\")\n", "print(background_info)\n", "print(\"Sample Characteristics Dictionary:\")\n", "print(sample_characteristics_dict)\n" ] }, { "cell_type": "markdown", "id": "e43ecd56", "metadata": {}, "source": [ "### Step 2: Dataset Analysis and Clinical Feature Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "62084be8", "metadata": {}, "outputs": [], "source": [ "# 1. Analyze gene expression data availability\n", "# Based on the background information, this dataset contains Affymetrix expression array profiles\n", "# which indicates it's likely to contain gene expression data\n", "is_gene_available = True # Affymetrix Human Gene 2.1 ST arrays data is available\n", "\n", "# 2. Analyze variable availability and data type conversion\n", "# 2.1 Data Availability\n", "\n", "# For trait (GERD):\n", "# Key 5 contains GERD status information\n", "trait_row = 5\n", "\n", "# For age:\n", "# Key 1 contains age information\n", "age_row = 1\n", "\n", "# For gender:\n", "# Key 2 contains gender information\n", "gender_row = 2\n", "\n", "# 2.2 Data Type Conversion\n", "\n", "# For trait (GERD):\n", "def convert_trait(value):\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary (0 for No GERD, 1 for GERD)\n", " if \"No GERD\" in value:\n", " return 0\n", " elif \"GERD\" in value:\n", " return 1\n", " else:\n", " return None\n", "\n", "# For age:\n", "def convert_age(value):\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to continuous\n", " try:\n", " return float(value)\n", " except:\n", " return None\n", "\n", "# For gender:\n", "def convert_gender(value):\n", " if pd.isna(value):\n", " return None\n", " \n", " # Extract the value after the colon\n", " if \":\" in value:\n", " value = value.split(\":\", 1)[1].strip()\n", " \n", " # Convert to binary (0 for female, 1 for male)\n", " if \"female\" in value.lower():\n", " return 0\n", " elif \"male\" in value.lower():\n", " return 1\n", " else:\n", " return None\n", "\n", "# 3. Save Metadata\n", "# Determine if trait data is available\n", "is_trait_available = trait_row is not None\n", "\n", "# Initial filtering and save metadata\n", "validate_and_save_cohort_info(\n", " is_final=False,\n", " cohort=cohort,\n", " info_path=json_path,\n", " is_gene_available=is_gene_available,\n", " is_trait_available=is_trait_available\n", ")\n", "\n", "# 4. Clinical Feature Extraction\n", "if trait_row is not None:\n", " # Extract clinical features\n", " selected_clinical_df = geo_select_clinical_features(\n", " clinical_df=clinical_data,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", " )\n", " \n", " # Preview the extracted clinical data\n", " print(\"Preview of extracted clinical data:\")\n", " print(preview_df(selected_clinical_df))\n", " \n", " # Save the clinical data\n", " os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", " selected_clinical_df.to_csv(out_clinical_data_file, index=False)\n", " print(f\"Clinical data saved to {out_clinical_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "0340368b", "metadata": {}, "source": [ "### Step 3: Gene Data Extraction" ] }, { "cell_type": "code", "execution_count": null, "id": "33feb428", "metadata": {}, "outputs": [], "source": [ "# 1. Get the file paths for the SOFT file and matrix file\n", "soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)\n", "\n", "# 2. First, let's examine the structure of the matrix file to understand its format\n", "import gzip\n", "\n", "# Peek at the first few lines of the file to understand its structure\n", "with gzip.open(matrix_file, 'rt') as file:\n", " # Read first 100 lines to find the header structure\n", " for i, line in enumerate(file):\n", " if '!series_matrix_table_begin' in line:\n", " print(f\"Found data marker at line {i}\")\n", " # Read the next line which should be the header\n", " header_line = next(file)\n", " print(f\"Header line: {header_line.strip()}\")\n", " # And the first data line\n", " first_data_line = next(file)\n", " print(f\"First data line: {first_data_line.strip()}\")\n", " break\n", " if i > 100: # Limit search to first 100 lines\n", " print(\"Matrix table marker not found in first 100 lines\")\n", " break\n", "\n", "# 3. Now try to get the genetic data with better error handling\n", "try:\n", " gene_data = get_genetic_data(matrix_file)\n", " print(gene_data.index[:20])\n", "except KeyError as e:\n", " print(f\"KeyError: {e}\")\n", " \n", " # Alternative approach: manually extract the data\n", " print(\"\\nTrying alternative approach to read the gene data:\")\n", " with gzip.open(matrix_file, 'rt') as file:\n", " # Find the start of the data\n", " for line in file:\n", " if '!series_matrix_table_begin' in line:\n", " break\n", " \n", " # Read the headers and data\n", " import pandas as pd\n", " df = pd.read_csv(file, sep='\\t', index_col=0)\n", " print(f\"Column names: {df.columns[:5]}\")\n", " print(f\"First 20 row IDs: {df.index[:20]}\")\n", " gene_data = df\n" ] }, { "cell_type": "markdown", "id": "7f217182", "metadata": {}, "source": [ "### Step 4: Gene Identifier Review" ] }, { "cell_type": "code", "execution_count": null, "id": "00fdd04f", "metadata": {}, "outputs": [], "source": [ "# The identifiers seen in the gene expression data (16657436, 16657445, etc.) appear to be \n", "# Affymetrix probeset IDs rather than human gene symbols. These are numeric identifiers \n", "# specific to the microarray platform used in this study.\n", "#\n", "# Standard human gene symbols would typically be alphabetic (like \"BRCA1\", \"TP53\", etc.) \n", "# or alphanumeric combinations that follow a recognizable pattern.\n", "#\n", "# These numeric IDs will need to be mapped to standard gene symbols for meaningful analysis.\n", "\n", "requires_gene_mapping = True\n" ] }, { "cell_type": "markdown", "id": "0b8f0a47", "metadata": {}, "source": [ "### Step 5: Gene Annotation" ] }, { "cell_type": "code", "execution_count": null, "id": "790eea20", "metadata": {}, "outputs": [], "source": [ "# 1. Let's first examine the structure of the SOFT file before trying to parse it\n", "import gzip\n", "\n", "# Look at the first few lines of the SOFT file to understand its structure\n", "print(\"Examining SOFT file structure:\")\n", "try:\n", " with gzip.open(soft_file, 'rt') as file:\n", " # Read first 20 lines to understand the file structure\n", " for i, line in enumerate(file):\n", " if i < 20:\n", " print(f\"Line {i}: {line.strip()}\")\n", " else:\n", " break\n", "except Exception as e:\n", " print(f\"Error reading SOFT file: {e}\")\n", "\n", "# 2. Now let's try a more robust approach to extract the gene annotation\n", "# Instead of using the library function which failed, we'll implement a custom approach\n", "try:\n", " # First, look for the platform section which contains gene annotation\n", " platform_data = []\n", " with gzip.open(soft_file, 'rt') as file:\n", " in_platform_section = False\n", " for line in file:\n", " if line.startswith('^PLATFORM'):\n", " in_platform_section = True\n", " continue\n", " if in_platform_section and line.startswith('!platform_table_begin'):\n", " # Next line should be the header\n", " header = next(file).strip()\n", " platform_data.append(header)\n", " # Read until the end of the platform table\n", " for table_line in file:\n", " if table_line.startswith('!platform_table_end'):\n", " break\n", " platform_data.append(table_line.strip())\n", " break\n", " \n", " # If we found platform data, convert it to a DataFrame\n", " if platform_data:\n", " import pandas as pd\n", " import io\n", " platform_text = '\\n'.join(platform_data)\n", " gene_annotation = pd.read_csv(io.StringIO(platform_text), delimiter='\\t', \n", " low_memory=False, on_bad_lines='skip')\n", " print(\"\\nGene annotation preview:\")\n", " print(preview_df(gene_annotation))\n", " else:\n", " print(\"Could not find platform table in SOFT file\")\n", " \n", " # Try an alternative approach - extract mapping from other sections\n", " with gzip.open(soft_file, 'rt') as file:\n", " for line in file:\n", " if 'ANNOTATION information' in line or 'annotation information' in line:\n", " print(f\"Found annotation information: {line.strip()}\")\n", " if line.startswith('!Platform_title') or line.startswith('!platform_title'):\n", " print(f\"Platform title: {line.strip()}\")\n", " \n", "except Exception as e:\n", " print(f\"Error processing gene annotation: {e}\")\n" ] }, { "cell_type": "markdown", "id": "91185d03", "metadata": {}, "source": [ "### Step 6: Gene Identifier Mapping" ] }, { "cell_type": "code", "execution_count": null, "id": "9d3902d0", "metadata": {}, "outputs": [], "source": [ "# 1. First, make sure we have the gene expression data loaded properly\n", "gene_data = get_genetic_data(matrix_file)\n", "\n", "# 2. Extract and prepare the gene mapping dataframe\n", "# Looking at the data, 'ID' contains the numeric identifiers that match the gene expression data\n", "# The 'gene_assignment' column contains gene symbol information\n", "mapping_df = gene_annotation[['ID', 'gene_assignment']]\n", "\n", "# Convert IDs to strings for consistent comparison\n", "mapping_df['ID'] = mapping_df['ID'].astype(str)\n", "\n", "# 3. Extract gene symbols from the complex gene_assignment field\n", "# Use the built-in extract_human_gene_symbols function which is more robust\n", "# It's able to identify gene symbols from complex text following standard patterns\n", "mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n", "\n", "# Print diagnostic information about the mapping\n", "print(f\"Number of probes in gene_data: {len(gene_data.index)}\")\n", "print(f\"Original mapping rows: {len(mapping_df)}\")\n", "print(f\"Sample of original mappings:\")\n", "print(mapping_df[['ID', 'Gene']].head(5))\n", "\n", "# Filter out mappings with empty gene lists\n", "mapping_df = mapping_df[mapping_df['Gene'].apply(len) > 0]\n", "print(f\"Filtered mapping rows: {len(mapping_df)}\")\n", "print(f\"Number of mappable probes: {len(mapping_df[mapping_df['ID'].isin(gene_data.index)])}\")\n", "\n", "# 4. Apply the gene mapping to get gene expression data\n", "gene_data = apply_gene_mapping(gene_data, mapping_df[['ID', 'Gene']])\n", "\n", "# Check data before normalization\n", "print(f\"\\nBefore normalization - shape: {gene_data.shape}\")\n", "print(f\"Sample gene symbols before normalization: {list(gene_data.index[:10])}\")\n", "\n", "# 5. Create a modified normalization function that preserves unmapped symbols\n", "def modified_normalize_gene_symbols(gene_df):\n", " with open(\"./metadata/gene_synonym.json\", \"r\") as f:\n", " synonym_dict = json.load(f)\n", " \n", " # Create a mapping function that keeps original symbol if not in dictionary\n", " def map_symbol(x):\n", " return synonym_dict.get(x.upper(), x)\n", " \n", " gene_df.index = gene_df.index.map(map_symbol)\n", " # Group and average rows with same index (after normalization)\n", " return gene_df.groupby(gene_df.index).mean()\n", "\n", "# Apply the modified normalization\n", "gene_data = modified_normalize_gene_symbols(gene_data)\n", "\n", "# Preview the mapped gene data\n", "print(\"\\nPreview of mapped gene data:\")\n", "print(f\"Shape: {gene_data.shape}\")\n", "print(gene_data.head())\n", "\n", "# Save the gene expression data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "gene_data.to_csv(out_gene_data_file)\n", "print(f\"Gene expression data saved to {out_gene_data_file}\")\n" ] }, { "cell_type": "markdown", "id": "576d8241", "metadata": {}, "source": [ "### Step 7: Data Normalization and Linking" ] }, { "cell_type": "code", "execution_count": null, "id": "a6f8b089", "metadata": {}, "outputs": [], "source": [ "# 1. Examine the issue with gene mapping in previous step\n", "print(\"Analyzing gene mapping issue...\")\n", "gene_data = get_genetic_data(matrix_file)\n", "print(f\"Gene data from file: {gene_data.shape}\")\n", "\n", "# Load gene annotation data more directly\n", "gene_annotation = get_gene_annotation(soft_file)\n", "print(f\"Gene annotation data shape: {gene_annotation.shape}\")\n", "\n", "# Extract and prepare the gene mapping dataframe\n", "mapping_df = gene_annotation[['ID', 'gene_assignment']]\n", "\n", "# Check a sample of the gene_assignment column\n", "print(\"\\nSample of gene_assignment data:\")\n", "for i, assignment in enumerate(mapping_df['gene_assignment'].head(3)):\n", " print(f\"Assignment {i}: {assignment[:100]}...\")\n", "\n", "# Apply extract_human_gene_symbols function to get gene symbols\n", "mapping_df['Gene'] = mapping_df['gene_assignment'].apply(extract_human_gene_symbols)\n", "\n", "# Print sample of extracted genes\n", "print(\"\\nSample of extracted genes:\")\n", "print(mapping_df[['ID', 'Gene']].head(5))\n", "\n", "# Implement a direct gene mapping approach as a fallback\n", "print(\"\\nImplementing alternative gene mapping approach...\")\n", "gene_to_expr = {}\n", "\n", "# First, create a mapping from probe IDs to gene symbols\n", "probe_to_genes = {}\n", "for i, row in mapping_df.iterrows():\n", " probe_id = str(row['ID'])\n", " genes = row['Gene']\n", " if genes and len(genes) > 0:\n", " probe_to_genes[probe_id] = genes\n", "\n", "# Apply the mapping to distribute expression values\n", "for probe_id, expr_values in gene_data.iterrows():\n", " probe_id_str = str(probe_id)\n", " if probe_id_str in probe_to_genes:\n", " genes = probe_to_genes[probe_id_str]\n", " value_share = 1.0 / len(genes)\n", " \n", " for gene in genes:\n", " if gene not in gene_to_expr:\n", " gene_to_expr[gene] = pd.Series(0, index=expr_values.index)\n", " gene_to_expr[gene] += expr_values * value_share\n", "\n", "# Convert the dictionary to a DataFrame\n", "gene_data = pd.DataFrame(gene_to_expr).T\n", "print(f\"Gene data after direct mapping: {gene_data.shape}\")\n", "\n", "# 1. Normalize gene symbols in the obtained gene expression data\n", "# Normalize gene symbols using NCBI Gene database\n", "normalized_gene_data = normalize_gene_symbols_in_index(gene_data)\n", "print(f\"Gene data shape after normalization: {normalized_gene_data.shape}\")\n", "print(f\"Sample gene symbols after normalization: {list(normalized_gene_data.index[:10])}\")\n", "\n", "# Save the normalized gene data\n", "os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)\n", "normalized_gene_data.to_csv(out_gene_data_file)\n", "print(f\"Normalized gene data saved to {out_gene_data_file}\")\n", "\n", "# 2. Link clinical and genetic data\n", "# Get raw clinical data from the matrix file\n", "_, clinical_raw = get_background_and_clinical_data(matrix_file)\n", "\n", "# Extract clinical features using the defined conversion functions\n", "clinical_features = geo_select_clinical_features(\n", " clinical_df=clinical_raw,\n", " trait=trait,\n", " trait_row=trait_row,\n", " convert_trait=convert_trait,\n", " age_row=age_row,\n", " convert_age=convert_age,\n", " gender_row=gender_row,\n", " convert_gender=convert_gender\n", ")\n", "\n", "print(\"Clinical features shape:\", clinical_features.shape)\n", "\n", "# Save clinical features to file\n", "os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)\n", "clinical_features.to_csv(out_clinical_data_file)\n", "print(f\"Clinical features saved to {out_clinical_data_file}\")\n", "\n", "# Link clinical and genetic data\n", "linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data)\n", "print(f\"Linked data shape: {linked_data.shape}\")\n", "print(\"Linked data preview (first 5 rows, first 5 columns):\")\n", "if linked_data.shape[1] >= 5:\n", " print(linked_data.iloc[:5, :5])\n", "else:\n", " print(linked_data.head())\n", "\n", "# 3. Handle missing values\n", "print(\"\\nMissing values before handling:\")\n", "print(f\" Trait ({trait}) missing: {linked_data[trait].isna().sum()} out of {len(linked_data)}\")\n", "if 'Age' in linked_data.columns:\n", " print(f\" Age missing: {linked_data['Age'].isna().sum()} out of {len(linked_data)}\")\n", "if 'Gender' in linked_data.columns:\n", " print(f\" Gender missing: {linked_data['Gender'].isna().sum()} out of {len(linked_data)}\")\n", "\n", "gene_cols = [col for col in linked_data.columns if col not in [trait, 'Age', 'Gender']]\n", "if gene_cols:\n", " print(f\" Genes with >20% missing: {sum(linked_data[gene_cols].isna().mean() > 0.2)}\")\n", " print(f\" Samples with >5% missing genes: {sum(linked_data[gene_cols].isna().mean(axis=1) > 0.05)}\")\n", "\n", "cleaned_data = handle_missing_values(linked_data, trait)\n", "print(f\"Data shape after handling missing values: {cleaned_data.shape}\")\n", "\n", "# 4. Evaluate bias in trait and demographic features\n", "is_trait_biased = False\n", "if len(cleaned_data) > 0:\n", " trait_biased, cleaned_data = judge_and_remove_biased_features(cleaned_data, trait)\n", " is_trait_biased = trait_biased\n", "else:\n", " print(\"No data remains after handling missing values.\")\n", " is_trait_biased = True\n", "\n", "# 5. Final validation and save\n", "is_usable = validate_and_save_cohort_info(\n", " is_final=True, \n", " cohort=cohort, \n", " info_path=json_path, \n", " is_gene_available=len(normalized_gene_data) > 0, \n", " is_trait_available=True, \n", " is_biased=is_trait_biased, \n", " df=cleaned_data,\n", " note=f\"Dataset contains gene expression data for {trait} analysis.\"\n", ")\n", "\n", "# 6. Save if usable\n", "if is_usable and len(cleaned_data) > 0:\n", " os.makedirs(os.path.dirname(out_data_file), exist_ok=True)\n", " cleaned_data.to_csv(out_data_file)\n", " print(f\"Linked data saved to {out_data_file}\")\n", "else:\n", " print(\"Data was determined to be unusable or empty and was not saved\")" ] } ], "metadata": {}, "nbformat": 4, "nbformat_minor": 5 }