# Path Configuration from tools.preprocess import * # Processing context trait = "Allergies" cohort = "GSE185658" # Input paths in_trait_dir = "../DATA/GEO/Allergies" in_cohort_dir = "../DATA/GEO/Allergies/GSE185658" # Output paths out_data_file = "./output/preprocess/1/Allergies/GSE185658.csv" out_gene_data_file = "./output/preprocess/1/Allergies/gene_data/GSE185658.csv" out_clinical_data_file = "./output/preprocess/1/Allergies/clinical_data/GSE185658.csv" json_path = "./output/preprocess/1/Allergies/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Check if gene expression data is available: is_gene_available = True # Based on microarray mention in the background info # 2) Identify trait_row, age_row, gender_row, and define the conversion functions: trait_row = 1 # "group" key likely indicates allergic status (AsthmaHDM vs. others) age_row = None # No age info found gender_row = None # No gender info found def convert_trait(value: str): # Extract the substring after the colon parts = value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip() # Interpret "AsthmaHDM" as having allergies (1) and others as no allergies (0) if val == 'AsthmaHDM': return 1 elif val in ['AsthmaHDMNeg', 'Healthy']: return 0 return None # Not used due to unavailability: convert_age = None convert_gender = None # 3) Initial filtering and metadata saving: is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical feature extraction if trait data is available: if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender ) print(preview_df(selected_clinical_df, n=5)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the numeric indices (e.g., '7892501', '7892502') rather than standard gene symbols like 'CD69' or 'TNF', # these identifiers appear to be probe IDs or some other non-human-gene-symbol identifiers that would require mapping. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1. The column "ID" in gene_annotation matches the probe IDs in the expression data, # and "gene_assignment" contains the relevant references for gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 2. Convert probe-level measurements to gene-level data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Quick check of the resulting gene_data print("Gene-level expression data shape:", gene_data.shape) print("First 20 gene symbols:", gene_data.index[:20].tolist()) import pandas as pd # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file, index=True) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Read the previously saved clinical data (which contains the trait) correctly: # Since we saved a single row (the trait) with multiple columns (sample IDs), # we read it as a normal CSV (no index_col) and then set the row index to the trait name. clinical_df = pd.read_csv(out_clinical_data_file) # Assign the single row index to the trait; columns are sample IDs. clinical_df.index = [trait] # 3. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data) # 4. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait_col=trait) # 5. Check and remove biased features, and see if our trait is biased is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Final validation and saving metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_biased, df=linked_data, note="Processed with correct trait indexing, missing-value handling, and bias checks." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Final linked data saved to {out_data_file}") else: print("Dataset is not usable; final linked data not saved.")