# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE139384" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE139384" # Output paths out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE139384.csv" out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE139384.csv" out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE139384.csv" json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Microarray transcriptome data is provided. # 2. Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary, we identify the following: # - The trait (ALS) can be inferred from row 0, which contains "clinical phenotypes: ALS", "ALS+D", "PDC", etc. trait_row = 0 # - Age data appears in row 2 (and row 3). We'll choose row 2 for this example, as it lists multiple ages. age_row = 2 # - Gender data can be found in row 1, which has both "gender: Female" and "gender: Male". gender_row = 1 # Define data type conversion functions def convert_trait(value: str) -> int: """ Convert raw trait strings into a binary label: 1 if the text contains 'ALS', else 0. Unknown or non-matching entries -> None """ parts = [x.strip() for x in value.split(':', 1)] if len(parts) < 2: return None val = parts[1].upper() # convert to uppercase for easy matching if 'ALS' in val: return 1 elif 'PDC' in val or 'AD' in val or 'HEALTHY CONTROL' in val or 'ALZHEIMER' in val: return 0 else: return None def convert_age(value: str) -> float: """ Convert raw age strings into a continuous (float) variable. Unknown entries -> None """ parts = [x.strip() for x in value.split(':', 1)] if len(parts) < 2: return None if not parts[0].lower().startswith('age'): return None try: return float(parts[1]) except ValueError: return None def convert_gender(value: str) -> int: """ Convert gender strings into a binary variable: female -> 0, male -> 1. Unknown entries -> None """ parts = [x.strip() for x in value.split(':', 1)] if len(parts) < 2: return None lab = parts[0].lower() val = parts[1].strip().lower() if lab.startswith('gender'): if 'female' in val: return 0 elif 'male' in val: return 1 return None # 3. Save Metadata - initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the output print("Preview of selected clinical features:", preview_df(selected_clinical_df, n=5)) # Save the extracted clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., ILMN_1343291) are Illumina probe IDs and not standard human gene symbols. # They need to be mapped to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. We observed that the gene expression data uses Illumina probe IDs like "ILMN_1343291" in its index. # In the gene annotation dataframe, these IDs appear in the 'ID' column. # The gene symbols are stored in the 'Symbol' column. # 2. Create the gene mapping dataframe using the 'get_gene_mapping' function gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Apply the mapping to convert probe-level measurements into gene-level data gene_data = apply_gene_mapping(gene_data, gene_mapping) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")