# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE212134" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134" # Output paths out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE212134.csv" out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv" out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv" json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # This dataset mentions mRNA expression, so we consider gene data available. # 2. Variable Availability # From the provided info, only gender data is found at row 0 with two distinct values, so it's available. trait_row = None # No row found or constant trait (all ALS), thus not available for analysis age_row = None # No row found for age gender_row = 0 # "gender: Female", "gender: Male" # 2.2 Data Type Conversion def convert_trait(value: str): # Trait data is not available; return None return None def convert_age(value: str): # Age data is not available; return None return None def convert_gender(value: str): # Extract the portion after 'gender:' if present if ':' in value: value = value.split(':', 1)[1].strip() # Convert to numeric: female -> 0, male -> 1 if value.lower() == 'female': return 0 elif value.lower() == 'male': return 1 else: return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # We only proceed if trait_row is not None; here, trait_row is None, so we skip. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("They appear to be numeric microarray probe IDs, not standard gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Step: Gene Identifier Mapping # 1. Identify the columns for probe IDs and gene symbols probe_col = "ID" # Column storing the microarray probe identifiers gene_col = "gene_assignment" # Column storing the gene assignment or symbols # 2. Get the gene mapping dataframe gene_mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_col) # 3. Convert probe-level measurements to gene-level expression data gene_data = apply_gene_mapping(gene_data, gene_mapping_df) # Print the first few rows of the mapped gene_data for inspection print(gene_data.head()) # STEP 7: Data Normalization and Linking # Since we concluded in previous steps that there is no trait data (trait_row = None), # we cannot link clinical data or perform trait-based analyses. We'll still normalize # the gene data and then perform a final validation indicating that the dataset does # not have trait information. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. No trait data is available, so we skip linking genetic and clinical data. # We also skip handling missing trait values or checking trait bias. # 3. Final Quality Validation # Since there's no trait, is_trait_available=False, so the dataset won't be deemed usable for trait-based analysis. # However, we still record the metadata. We must provide 'df' and 'is_biased' as the function requires. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, # Arbitrarily False because trait doesn't exist df=normalized_gene_data, # We'll pass the gene data as the 'df' note="No trait data available, so cohort is not usable for association study." ) # 4. If the dataset were usable, we'd save the final linked data. In this case, it's not usable for trait-based association. if is_usable: # This branch will not execute because there's no trait linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Trait data not available. Skipping final output for association analysis.")