# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE68607" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE68607" # Output paths out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE68607.csv" out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68607.csv" out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE68607.csv" json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine gene expression data availability is_gene_available = True # Based on the series description, it measures gene expression, not miRNA or methylation. # Step 2: Identify data availability and define data type conversion functions # The trait is found at key=1 with multiple distinct values (Control, ALS). trait_row = 1 # No age or gender data found. age_row = None gender_row = None # Define conversion functions def convert_trait(value: str): if value is None: return None # Extract value after the colon (if any) if ":" in value: value = value.split(":", 1)[1].strip().lower() # Convert to binary (0 = Control, 1 = ALS) if value == "control": return 0 elif value == "als due to mtc9orf72" or value == "als not due to mtc9orf72": return 1 return None def convert_age(value: str): # No age data is available, so always return None return None def convert_gender(value: str): # No gender data is available, so always return None return None # Step 3: Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: If trait data is available, extract clinical features, preview, and save if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(selected_clinical_df, n=5) print("Preview of selected clinical features:", preview) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers ("ENST...") are Ensembl transcript IDs and are not standard human gene symbols. # Therefore, they require additional mapping to gene symbols. print("\nrequires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping # 1 & 2. Decide which columns in the gene_annotation correspond to the transcript identifiers # and which columns correspond to the gene symbols. Here, "ID" matches the ENST... IDs # and "ORF" holds the desired gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="ORF") # 3. Convert probe-level data to gene-level data by applying the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a small portion of the new index to verify changes in identifiers. print("New gene_data index (first 20):") print(gene_data.index[:20]) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Systematically handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and demographic features) are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data is ALS vs. control; age and gender are not available." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable for association; skipping final output.")