# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE68608" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE68608" # Output paths out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE68608.csv" out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE68608.csv" out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE68608.csv" json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability is_gene_available = True # Based on the background, it's likely gene expression data. # 2) Variable Availability and Data Type Conversion trait_row = 1 # Key 1 contains ALS vs Control information. age_row = None # No age information found in the dictionary. gender_row = None # No gender information found in the dictionary. def convert_trait(value: str): # Extract the part after the colon (if any) and convert to lowercase if ':' in value: _, val = value.split(':', 1) val = val.strip().lower() else: val = value.strip().lower() # Map to binary if 'als' in val: return 1 elif 'control' in val or 'healthy' in val: return 0 else: return None def convert_age(value: str): # No age data is available; return None return None def convert_gender(value: str): # No gender data is available; return None return None # 3) Save Metadata (Initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction (only if trait data is available) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of selected clinical features:") print(preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the provided identifiers (e.g., '1007_s_at', '1053_at'), they appear to be Affymetrix probe set IDs. # These are not standard human gene symbols and thus require mapping to gene symbols. print("They appear to be Affymetrix probe set IDs.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) The 'ID' column in 'gene_annotation' corresponds to the probe IDs in the gene expression data. # The 'Gene Symbol' column contains the gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol') # 2) Convert probe-level measurements to gene-level measurements by applying the many-to-many mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Systematically handle missing values linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and demographic features) are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data is ALS vs. control; age and gender are not available." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Data not usable for association; skipping final output.")