# Path Configuration from tools.preprocess import * # Processing context trait = "Amyotrophic_Lateral_Sclerosis" cohort = "GSE95810" # Input paths in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis" in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE95810" # Output paths out_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/GSE95810.csv" out_gene_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/gene_data/GSE95810.csv" out_clinical_data_file = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE95810.csv" json_path = "./output/preprocess/1/Amyotrophic_Lateral_Sclerosis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if gene expression data is available is_gene_available = True # Based on series title indicating "Gene expression..." # 2) Identify the availability of trait, age, and gender data trait_row = None # No ALS-specific indicator in the sample characteristics age_row = None # No age data found gender_row = None # No gender data found # 2) Create conversion functions (though they won't be used since rows are None) def convert_trait(value: str): return None def convert_age(value: str): return None def convert_gender(value: str): return None # 3) Initial metadata saving and validation is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Skip clinical feature extraction because 'trait_row' is None # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the provided gene identifiers (e.g., A1BG, A1CF, A2M, etc.), they appear to be standard human gene symbols. # Consequently, a separate mapping step does not seem to be required. print("requires_gene_mapping = False") # STEP 5: Data Normalization and Linking # Since trait data is not available based on the previous steps (trait_row=None), # we cannot perform clinical-gene linking or meaningful trait-based analyses. # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2-6. Since there's no trait data, we skip linking and final output for association. # Perform final validation indicating the dataset is not usable for trait association. is_trait_available = False validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=is_trait_available, is_biased=False, # Provide a valid Boolean so it doesn't raise ValueError df=pd.DataFrame(), # Empty since we can't link without trait note="No trait data found; skipping linking and final output." ) print("Trait data is unavailable; no further steps for linking or final output can be performed.")