# Path Configuration from tools.preprocess import * # Processing context trait = "Angelman_Syndrome" cohort = "GSE43900" # Input paths in_trait_dir = "../DATA/GEO/Angelman_Syndrome" in_cohort_dir = "../DATA/GEO/Angelman_Syndrome/GSE43900" # Output paths out_data_file = "./output/preprocess/1/Angelman_Syndrome/GSE43900.csv" out_gene_data_file = "./output/preprocess/1/Angelman_Syndrome/gene_data/GSE43900.csv" out_clinical_data_file = "./output/preprocess/1/Angelman_Syndrome/clinical_data/GSE43900.csv" json_path = "./output/preprocess/1/Angelman_Syndrome/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if the dataset likely contains gene expression data is_gene_available = True # From background info, it appears to focus on gene regulation, so we assume gene expression data # 2. Variable Availability and Data Type Conversion # According to the sample characteristics dictionary, we only have: # 0: treatment information, # 1: cell type, and # 2: strain. # None indicates that the dataset does not provide suitable human trait, age, or gender info. trait_row = None age_row = None gender_row = None # Define the conversion functions (though they won't be used if rows are None). def convert_trait(x: str) -> int: # No actual data available, placeholder implementation return None def convert_age(x: str) -> float: # No actual data available, placeholder implementation return None def convert_gender(x: str) -> int: # No actual data available, placeholder implementation return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (skip because trait_row is None) # No action needed as trait_row is None # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, the identifiers are numeric probe IDs and do not appear to be standard human gene symbols. # Therefore, gene mapping is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide the columns for gene identifier (probe) and gene symbol based on the preview. probe_col = "ID" gene_symbol_col = "Gene Symbol" # 2. Get the mapping dataframe from the annotation. mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) # 3. Convert probe-level measurements to gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Display the first few gene symbols to confirm the result. print(gene_data.index[:20]) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Check if the trait is available in this dataset if trait_row is None: # If the trait does not exist, we do not finalize; we do an initial validation # so that the library won't require 'df' and 'is_biased'. validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, # Genetic data is present is_trait_available=False # Trait data is not available ) print("Trait data not available. Only gene expression data was processed. No final data to save.") else: # 3. Since trait is available, link the clinical and genetic data on sample IDs selected_clinical_df = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row, convert_age, gender_row, convert_gender ) linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 4. Handle missing values as instructed linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait is severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")