# Path Configuration from tools.preprocess import * # Processing context trait = "Ankylosing_Spondylitis" cohort = "GSE73754" # Input paths in_trait_dir = "../DATA/GEO/Ankylosing_Spondylitis" in_cohort_dir = "../DATA/GEO/Ankylosing_Spondylitis/GSE73754" # Output paths out_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/GSE73754.csv" out_gene_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/gene_data/GSE73754.csv" out_clinical_data_file = "./output/preprocess/1/Ankylosing_Spondylitis/clinical_data/GSE73754.csv" json_path = "./output/preprocess/1/Ankylosing_Spondylitis/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1. Determine gene expression data availability is_gene_available = True # Based on the background (differential gene expression analysis), we consider this dataset to have gene data # Step 2. Identify data availability for trait, age, and gender # According to the sample characteristics dictionary: # 0 -> 'Sex: Male', 'Sex: Female' # 1 -> 'age (yr): 53', ... # 3 -> 'disease: Ankylosing Spondylitis', 'disease: healthy control' trait_row = 3 age_row = 1 gender_row = 0 # Step 2.2 Define conversion functions def convert_trait(x: str): # e.g., "disease: Ankylosing Spondylitis" -> 1, "disease: healthy control" -> 0 # parse out the value after the colon try: val = x.split(":", 1)[1].strip().lower() except IndexError: return None if "ankylosing spondylitis" in val: return 1 elif "healthy control" in val: return 0 else: return None def convert_age(x: str): # e.g., "age (yr): 53" -> 53 try: val = x.split(":", 1)[1].strip() return float(val) except: return None def convert_gender(x: str): # e.g., "Sex: Male" -> 1, "Sex: Female" -> 0 try: val = x.split(":", 1)[1].strip().lower() except IndexError: return None if "male" in val: return 1 elif "female" in val: return 0 else: return None # Step 3. Initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4. Clinical feature extraction (only if trait_row is not None) if trait_row is not None: # 'clinical_data' is assumed to be the DataFrame previously obtained for sample characteristics selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the result print("Preview of clinical features:") print(preview_df(selected_clinical_df, n=5)) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The observed gene identifiers (ILMN_####) are Illumina microarray probe IDs. # They are not standard human gene symbols and require mapping to official gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the annotation columns for mapping # - The gene expression data uses 'ILMN_####' as identifiers, which match the 'ID' column in the annotation. # - The gene symbols are in the 'Symbol' column. # 2. Extract the gene mapping dataframe using the library function gene_mapping_df = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping_df) # Print shape of the new gene_data to confirm processing print("Gene data shape after mapping:", gene_data.shape) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")