# Path Configuration from tools.preprocess import * # Processing context trait = "Anorexia_Nervosa" cohort = "GSE60190" # Input paths in_trait_dir = "../DATA/GEO/Anorexia_Nervosa" in_cohort_dir = "../DATA/GEO/Anorexia_Nervosa/GSE60190" # Output paths out_data_file = "./output/preprocess/1/Anorexia_Nervosa/GSE60190.csv" out_gene_data_file = "./output/preprocess/1/Anorexia_Nervosa/gene_data/GSE60190.csv" out_clinical_data_file = "./output/preprocess/1/Anorexia_Nervosa/clinical_data/GSE60190.csv" json_path = "./output/preprocess/1/Anorexia_Nervosa/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available # Based on the background info (Illumina HumanHT-12 v3 microarray measurements), # we conclude that gene expression data is available. is_gene_available = True # 2. Identify rows and define conversion functions for trait, age, and gender. # After examining the sample characteristics dictionary, we select: # - trait information in row 3 ("dx: ED", "dx: OCD", "dx: Control", etc.) # We'll map "dx: ED" -> 1 (our trait of interest, albeit grouped as ED) # and everything else -> 0. trait_row = 3 # - age information in row 5 (e.g., "age: 50.421917") age_row = 5 # - gender information in row 7 (e.g., "Sex: F" or "Sex: M") gender_row = 7 def convert_trait(x: str) -> Optional[int]: parts = x.split(":", 1) if len(parts) < 2: return None val = parts[1].strip() # Convert "ED" to 1, others (including OCD, Control, etc.) to 0 return 1 if val == "ED" else 0 def convert_age(x: str) -> Optional[float]: parts = x.split(":", 1) if len(parts) < 2: return None val = parts[1].strip() try: return float(val) except ValueError: return None def convert_gender(x: str) -> Optional[int]: parts = x.split(":", 1) if len(parts) < 2: return None val = parts[1].strip() # Map "F" -> 0, "M" -> 1 if val == "F": return 0 elif val == "M": return 1 return None # 2.1 Check if trait data is available # We consider trait data available if trait_row is not None is_trait_available = (trait_row is not None) # 3. Perform initial filtering and save metadata # (is_final=False for initial filtering) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait_row is not None, extract clinical features, preview, and save if trait_row is not None: clinical_data_selected = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical data preview = preview_df(clinical_data_selected) print("Preview of selected clinical features:", preview) # Save the clinical features to CSV clinical_data_selected.to_csv(out_clinical_data_file) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These are Illumina probe identifiers (e.g., ILMN_xxxx), which are not human gene symbols and thus require mapping.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6 - Gene Identifier Mapping # 1. Identify the columns for probe IDs and gene symbols in the gene_annotation DataFrame. # From observing the data preview, "ID" holds Illumina probe identifiers matching our gene_data index, # and "Symbol" holds the gene symbol information. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 2. Apply this mapping to the probe-level expression data to get gene-level expression data. gene_data = apply_gene_mapping(gene_data, mapping_df) # Now, 'gene_data' contains gene expression values indexed by gene symbols. # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Make sure we have the clinical data in scope. # In previous steps, we stored it as 'clinical_data_selected', so define 'selected_clinical' for consistency here. selected_clinical = clinical_data_selected # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 3. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, # We do have a trait column is_biased=trait_biased, df=linked_data, note="Cohort data successfully processed with trait-based analysis." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")