# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE60190" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE60190" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE60190.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE60190.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE60190.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if this dataset likely contains gene expression data # From the background info, it's clear that this is a microarray-based gene expression dataset. is_gene_available = True # Step 2: Identify data availability for trait, age, and gender # and define the corresponding row indices and conversion functions. # --------------------------------------------------------------- # 2.1 Data Availability # We do not see any explicit or strongly inferable row key for "Anxiety_disorder" in the sample characteristics, # so we consider the trait unavailable. trait_row = None # We see age data in key=5 with multiple unique numeric values, so it's available. age_row = 5 # We see gender data in key=7 ("Sex: F" or "Sex: M"), so it's available. gender_row = 7 # 2.2 Data Type Conversion def convert_trait(x: str): """ Since trait_row is None (trait not available), this function is not actually used. We provide a placeholder that returns None. """ return None def convert_age(x: str): """ Convert age from a string like 'age: 30.5' to a float. Unknown or invalid values become None. """ try: # Split at colon, take right side, strip spaces val_str = x.split(':', 1)[1].strip() return float(val_str) except: return None def convert_gender(x: str): """ Convert gender from a string like 'Sex: F' or 'Sex: M' to 0 or 1. Unknown values become None. """ try: val_str = x.split(':', 1)[1].strip().upper() if val_str in ['F', 'FEMALE']: return 0 elif val_str in ['M', 'MALE']: return 1 else: return None except: return None # Step 3: Conduct initial filtering on dataset usability # Trait data availability depends on whether trait_row is None. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Clinical Feature Extraction # Only do this step if trait_row is not None. In this case, trait_row is None, so we skip it. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # After examining the provided gene identifiers, they are Illumina probe IDs (e.g., ILMN_1343291), # which are not standard human gene symbols. Therefore, they require mapping to the correct gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which column in the gene annotation stores the probe IDs matching those in the gene expression data ("ID"), # and which column stores the gene symbols ("Symbol"). probe_id_col = "ID" gene_symbol_col = "Symbol" # 2. Get a gene mapping dataframe by extracting these two columns. gene_mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col=probe_id_col, gene_col=gene_symbol_col ) # 3. Convert probe-level measurements to gene-level measurements by applying the mapping. gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping_df) # STEP 7: Data Normalization and Linking import pandas as pd # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Since trait_row was None, we have no trait data; skip linking clinical data or trait-based steps. # 5. Conduct final quality validation # The library mandates that when is_final=True, we must provide both df and is_biased as non-None. # Here, we have no trait data, so we pass an empty DataFrame and set is_biased=False (arbitrary boolean), # which will mark the dataset as not usable for trait-based analysis. empty_df = pd.DataFrame() is_trait_available = False is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # We did confirm gene expression is available is_trait_available=is_trait_available, is_biased=False, # Arbitrary boolean to satisfy the function requirement df=empty_df, note="Trait data is unavailable for this cohort." ) # 6. If the dataset were usable, we would save final linked data, but here it will not be usable. if is_usable: print("Dataset unexpectedly marked as usable; no trait present.") else: print("No trait data, so the dataset is not usable for trait-based analysis. Skipping final output.")