# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE78104" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE78104" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE78104.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE78104.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE78104.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # From the background info (lncRNA + mRNA microarray), it's likely gene expression data is available. # 2. Variable Availability and Data Type Conversion # Based on the sample characteristics dictionary: # Row 1 => "disease state: Obsessive-Compulsive Disorder" or "normal control" # We interpret OCD as part of "Anxiety_disorder" (1) vs normal (0). trait_row = 1 # Row 2 => "gender: male" or "gender: female" gender_row = 2 # Row 3 => "age: 25y", "23y", "18y", etc. age_row = 3 # Define conversion functions def convert_trait(value: str): """Convert a disease state value into binary, mapping OCD to 1 and normal control to 0.""" if ":" in value: value = value.split(":", 1)[1].strip().lower() if "compulsive" in value: return 1 elif "normal" in value: return 0 return None def convert_age(value: str): """Convert age string like 'age: 25y' into an integer.""" if ":" in value: value = value.split(":", 1)[1].strip().lower() value = value.replace("y", "") # remove trailing 'y' try: return float(value) except ValueError: return None def convert_gender(value: str): """Convert gender string like 'gender: male'/'gender: female' into binary, female->0, male->1.""" if ":" in value: value = value.split(":", 1)[1].strip().lower() if value == "male": return 1 elif value == "female": return 0 return None # 3. Save Metadata (Initial filtering) is_trait_available = trait_row is not None is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: clinical_selected = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview = preview_df(clinical_selected) print("Preview of selected clinical features:") print(preview) clinical_selected.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the identifiers, they do not appear to be standard human gene symbols. # Therefore, they likely need to be mapped. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which annotation columns match the gene expression data's "ID" and which contain the gene symbol. # From our observation, the annotation column "ID" matches the gene expression data "ID", # and "GeneSymbol" contains the gene symbol information. # 2. Get a mapping dataframe with those columns. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GeneSymbol') # 3. Convert probe-level measurements to gene-level measurements. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Ensure sample IDs in clinical and gene data match def unify_sample_ids(df): df.columns = df.columns.astype(str).str.strip().str.strip('"') df.columns = df.columns.str.replace(r'\.CEL.*$', '', regex=True) return df selected_clinical = unify_sample_ids(clinical_selected) normalized_gene_data = unify_sample_ids(normalized_gene_data) common_samples = set(selected_clinical.columns).intersection(normalized_gene_data.columns) if len(common_samples) == 0: print("Warning: No matching sample IDs were found. The dataset may be misaligned.") selected_clinical = selected_clinical.loc[:, list(common_samples)] normalized_gene_data = normalized_gene_data.loc[:, list(common_samples)] # 3. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 4. Handle missing values, removing or imputing as instructed linked_data = handle_missing_values(linked_data, trait) # 5. Determine whether the trait (and potentially other features) is severely biased. trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Cohort data processed with ID alignment fix." ) # 7. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")