# Path Configuration from tools.preprocess import * # Processing context trait = "Anxiety_disorder" cohort = "GSE94119" # Input paths in_trait_dir = "../DATA/GEO/Anxiety_disorder" in_cohort_dir = "../DATA/GEO/Anxiety_disorder/GSE94119" # Output paths out_data_file = "./output/preprocess/1/Anxiety_disorder/GSE94119.csv" out_gene_data_file = "./output/preprocess/1/Anxiety_disorder/gene_data/GSE94119.csv" out_clinical_data_file = "./output/preprocess/1/Anxiety_disorder/clinical_data/GSE94119.csv" json_path = "./output/preprocess/1/Anxiety_disorder/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info (Illumina HT-12v4 BeadChip microarray) # 2. Variable Availability and Data Type Conversion # From the sample characteristics, we see: # - trait (Anxiety_disorder): Not explicitly in the dictionary, and all are anxiety patients => no variation # - age: Not found in the dictionary # - gender: Key 0 with 'FEMALE' and 'MALE' trait_row = None # No variation or row for Anxiety_disorder age_row = None # No row for age gender_row = 0 # gender is stored in key 0 # Define converter functions def convert_trait(value: str): # Not used here because trait is not available; return None return None def convert_age(value: str): # Not used here because age_row is None; return None return None def convert_gender(value: str): # Example values like "gender: FEMALE" or "gender: MALE" parts = value.split(":") if len(parts) < 2: return None gender_str = parts[1].strip().upper() if gender_str == "FEMALE": return 0 elif gender_str == "MALE": return 1 else: return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Only if trait_row is not None (which it isn't). So skip. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the listed Illumina probe IDs (e.g., ILMN_1651228), these are not human gene symbols. # They will require mapping to get the official gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the relevant columns in the gene annotation dataframe. # From the preview, we see "ID" holds the Illumina identifiers (matching the expression data index), # and "Symbol" holds the gene symbols. # 2. Extract the mapping between probe IDs and gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 3. Convert probe-level measurements to gene-level expression using apply_gene_mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optionally, you might preview or inspect the resulting gene_data here if needed) # STEP 7: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # Since we do not have a trait_row (it was None), there's no separate "selected_clinical". # We'll just reuse the clinical_data from previous steps. selected_clinical = clinical_data # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data) # 3 & 4. We skip trait-based missing-value handling and bias checks since there's no trait. # 5. Conduct final quality validation and save metadata # Since the trait is not available, set is_trait_available=False. # We must also provide is_biased=False to comply with validate_and_save_cohort_info's requirement when is_final=True. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=False, # No trait to judge bias. df=linked_data, note="No trait data available in this cohort." ) # 6. If the dataset is deemed usable (unlikely here without trait), save the final linked data if is_usable: linked_data.to_csv(out_data_file, index=True) print(f"Saved final linked data to {out_data_file}") else: print("The dataset is not usable for trait-based association. Skipping final output.")