# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE136992" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE136992" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE136992.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE136992.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE136992.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine gene expression data availability is_gene_available = True # This dataset includes Illumina whole genome gene expression data # 2.1 Determine data availability (keys for trait, age, gender) trait_row = None # No row found for "Arrhythmia" in the sample characteristics age_row = 2 # Row 2 contains multiple distinct 'age' values gender_row = 3 # Row 3 contains multiple distinct 'gender' values # 2.2 Define data type conversions def convert_trait(value: str): # Trait data is not available; return None return None def convert_age(value: str): """Convert 'age: XX weeks' to a numeric type.""" try: # Extract the substring after 'age:' and strip spaces raw = value.split(':', 1)[1].strip() # Remove the word 'weeks' if present raw = raw.lower().replace('weeks', '').strip() return float(raw) except: return None def convert_gender(value: str): """Convert 'gender: male/female' to binary (0=female, 1=male).""" try: raw = value.split(':', 1)[1].strip().lower() if raw == 'male': return 1 elif raw == 'female': return 0 else: return None except: return None # 3. Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Skip clinical feature extraction, since trait_row is None # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers, starting with "ILMN_", are Illumina probe IDs rather than standard gene symbols. # Therefore, they need to be mapped to the corresponding human gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Decide which columns hold the probe IDs (same as gene_data.index) and the gene symbols. # From the annotation preview, "ID" matches the probe IDs, and "Symbol" contains the gene symbols. # 2. Get a gene mapping dataframe (probe ID -> gene symbol). mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 3. Convert the probe-level expression data to gene-level data using the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7: Data Normalization and Linking # First, check if trait data is available. # From our previous steps, we know 'trait_row' was None, so trait data is not available. # Hence, we skip linking, missing-value handling, and bias checks, # but we still need to do final validation to mark it unusable. if not is_trait_available: import pandas as pd print("Trait data is not available. Skipping link, missing-value handling, and bias checks.") # Provide a boolean for is_biased to avoid the ValueError in final validation. # The dataset is not usable because the trait is missing, so we can set is_biased=True. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # gene data is available, is_trait_available=False, # but trait data is missing is_biased=True, # no valid trait -> not usable df=pd.DataFrame(), # an empty DataFrame suffices here note="Trait data not found; dataset is not usable." ) print("Dataset was not deemed usable due to missing trait data; final linked data not saved.") else: # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs (requires clinical data from step 2) linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 3. Handle missing values in linked data linked_data = handle_missing_values(linked_data, trait_col=trait) # 4. Determine bias trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait) # 5. Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data and gene data successfully linked." ) # 6. Save final linked data if usable if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset was not deemed usable; final linked data not saved.")