# Path Configuration from tools.preprocess import * # Processing context trait = "Arrhythmia" cohort = "GSE143924" # Input paths in_trait_dir = "../DATA/GEO/Arrhythmia" in_cohort_dir = "../DATA/GEO/Arrhythmia/GSE143924" # Output paths out_data_file = "./output/preprocess/1/Arrhythmia/GSE143924.csv" out_gene_data_file = "./output/preprocess/1/Arrhythmia/gene_data/GSE143924.csv" out_clinical_data_file = "./output/preprocess/1/Arrhythmia/clinical_data/GSE143924.csv" json_path = "./output/preprocess/1/Arrhythmia/cohort_info.json" # STEP 1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Assess Gene Expression Data Availability is_gene_available = True # "Transcriptome analysis" indicates gene expression data is available. # 2) Identify Variable Availability (trait, age, gender) and Define Converters trait_row = 1 age_row = None gender_row = None def convert_trait(value: str): parts = value.split(':') val = parts[1].strip() if len(parts) > 1 else parts[0].strip() # Map sinus rhythm => 0, atrial fibrillation => 1, otherwise None if 'sinus rhythm' in val.lower(): return 0 elif 'atrial fibrillation' in val.lower(): return 1 return None def convert_age(value: str): return None # No age data available def convert_gender(value: str): return None # No gender data available # 3) Initial Filtering and Save Metadata is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) If trait data is available, extract clinical features and save if trait_row is not None: selected_clinical_data = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) print("Preview of Selected Clinical Features:") print(preview_df(selected_clinical_data, n=5, max_items=200)) selected_clinical_data.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed gene identifiers, they appear to be recognized human gene symbols or their aliases. requires_gene_mapping = False # STEP 5: Data Normalization and Linking # 1. Normalize gene symbols in the obtained gene expression data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print(f"Saved normalized gene data to {out_gene_data_file}") # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait_col=trait) # 4. Determine whether the trait/demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait=trait) # 5. Conduct final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait data and gene data successfully linked." ) # 6. If the dataset is deemed usable, save the final linked data as a CSV file if is_usable: linked_data.to_csv(out_data_file) print(f"Saved final linked data to {out_data_file}") else: print("Dataset was not deemed usable; final linked data not saved.")