# Path Configuration from tools.preprocess import * # Processing context trait = "Atherosclerosis" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Atherosclerosis/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Atherosclerosis/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Atherosclerosis/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Atherosclerosis/cohort_info.json" import os # Step 1: Identify subdirectory that might relate to our trait "Atherosclerosis" subdirs = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] suitable_subdir = None # Replace synonyms with atherosclerosis-related terms synonyms = ["atherosclerosis"] for sd in subdirs: if any(term in sd.lower() for term in synonyms): suitable_subdir = sd break if not suitable_subdir: print(f"No suitable subdirectory found for trait '{trait}'. Skipping this trait.") validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # Step 2: Identify clinical and genetic file paths clinical_path, genetic_path = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, suitable_subdir)) # Step 3: Load data into dataframes clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t') # Step 4: Print clinical data columns print("Clinical Data Columns:", clinical_df.columns.tolist())