# Path Configuration from tools.preprocess import * # Processing context trait = "Bile_Duct_Cancer" cohort = "GSE131027" # Input paths in_trait_dir = "../DATA/GEO/Bile_Duct_Cancer" in_cohort_dir = "../DATA/GEO/Bile_Duct_Cancer/GSE131027" # Output paths out_data_file = "./output/preprocess/1/Bile_Duct_Cancer/GSE131027.csv" out_gene_data_file = "./output/preprocess/1/Bile_Duct_Cancer/gene_data/GSE131027.csv" out_clinical_data_file = "./output/preprocess/1/Bile_Duct_Cancer/clinical_data/GSE131027.csv" json_path = "./output/preprocess/1/Bile_Duct_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the series description mentioning "expression features", we assume gene expression. # 2. Variable Availability and Data Type Conversion # From the sample characteristics, "Bile duct cancer" appears under key=1 alongside other cancers. # Hence, trait data is available and not constant. So: trait_row = 1 # Age data is not present in the dictionary. age_row = None # Gender data is also absent in the dictionary. gender_row = None # Define conversion functions def convert_trait(value: str): # Split by colon and take the rightmost part val = value.split(':')[-1].strip().lower() # Convert "bile duct cancer" to 1, everything else to 0, unknown to None if val == "bile duct cancer": return 1 elif val: return 0 return None def convert_age(value: str): # No data available, just return None return None def convert_gender(value: str): # No data available, just return None return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted features (just for inspection, not stored) print(preview_df(selected_clinical_df, n=5, max_items=200)) # Save clinical data selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6 - Gene Identifier Mapping # 1. Identify columns in 'gene_annotation' which correspond to the probe ID and the gene symbol. # From the preview, the 'ID' column matches our gene_data index (e.g., '1007_s_at'), # and the 'Gene Symbol' column stores the gene symbols. # 2. Get the gene mapping dataframe gene_mapping_df = get_gene_mapping( annotation=gene_annotation, prob_col="ID", gene_col="Gene Symbol" ) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping( expression_df=gene_data, mapping_df=gene_mapping_df ) # Optional: Print shape or index to verify print("Gene expression data after mapping:") print("Shape:", gene_data.shape) print("First 5 genes:\n", gene_data.index[:5]) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically using the actual trait name linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)