# Path Configuration from tools.preprocess import * # Processing context trait = "Bipolar_disorder" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Bipolar_disorder/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Bipolar_disorder/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Bipolar_disorder/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Bipolar_disorder/cohort_info.json" import os import pandas as pd # Step 1: Check directories in tcga_root_dir for anything relevant to "Bipolar_disorder" search_terms = ["bipolar", "bipolar_disorder", "mania"] dir_list = os.listdir(tcga_root_dir) matching_dir = None for d in dir_list: d_lower = d.lower() if any(term in d_lower for term in search_terms): # Found a match, select this directory matching_dir = d break if matching_dir is None: # No matching directory found. Mark the dataset as skipped. validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # 2. Identify the clinicalMatrix and PANCAN files cohort_dir = os.path.join(tcga_root_dir, matching_dir) clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3. Load both data files clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4. Print the column names of the clinical data print("Clinical Data Columns:") print(clinical_df.columns.tolist())