# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE234017" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE234017" # Output paths out_data_file = "./output/preprocess/1/Breast_Cancer/GSE234017.csv" out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE234017.csv" out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE234017.csv" json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide if gene expression data is likely available is_gene_available = True # Spatial transcriptomics indicates gene expression data # 2. Identify variable availability # From the sample characteristics dictionary, row 2 ("genotype: WT/BRCA1/BRCA2") # best reflects the trait "Breast_Cancer" in a binary manner (WT vs BRCA-mutated) trait_row = 2 age_row = None gender_row = None # 2.2 Data Type Conversions def convert_trait(value: str): parts = value.split(':') if len(parts) < 2: return None val = parts[1].strip() # WT => 0, BRCA1 => 1, BRCA2 => 1 if val == "WT": return 0 elif val in ["BRCA1", "BRCA2"]: return 1 return None def convert_age(value: str): # No age data is provided return None def convert_gender(value: str): # No gender data is provided return None # 3. Save metadata with initial filtering is_trait_available = (trait_row is not None) _ = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_result = preview_df(selected_clinical_df, n=5, max_items=200) print("Preview of selected clinical features:", preview_result) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed identifiers, they do not appear to be standard human gene symbols. # Thus, they likely require mapping to official gene symbols. print("They appear to be some form of platform-based IDs.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the gene annotation that contain the same IDs as in 'gene_data' # and the column that contains the gene symbols ("ID" for probe identifiers, "ORF" for gene symbols). mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ORF') # 2. Convert probe-level measurements to gene expression data using the mapping dataframe. gene_data = apply_gene_mapping(gene_data, mapping_df) # 3. Print the shape and a small preview of the resulting gene-level expression dataframe. print("Gene data shape after mapping:", gene_data.shape) print("Preview of mapped gene data:", preview_df(gene_data, n=5, max_items=20)) # STEP7 # 1. Normalize the obtained gene data using the NCBI Gene synonym database normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically linked_data_processed = handle_missing_values(linked_data, trait_col=trait) # 4. Check for biased trait and remove any biased demographic features trait_biased, linked_data_final = judge_and_remove_biased_features(linked_data_processed, trait) # 5. Final quality validation and metadata saving is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data_final, note="Dataset processed with GEO pipeline. Checked for missing values and bias." ) # 6. If dataset is usable, save the final linked data if is_usable: linked_data_final.to_csv(out_data_file)