# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" cohort = "GSE283522" # Input paths in_trait_dir = "../DATA/GEO/Breast_Cancer" in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE283522" # Output paths out_data_file = "./output/preprocess/1/Breast_Cancer/GSE283522.csv" out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/GSE283522.csv" out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/GSE283522.csv" json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) import re # 1. Gene Expression Data Availability # Based on the background describing RNA-sequencing (mFISHseq), this dataset likely contains gene expression data. is_gene_available = True # 2. Variable Availability and Conversions # 2.1 Identify rows in the Sample Characteristics Dictionary # Trait: row 1 (contains "isolate: breast cancer patient", "isolate: healthy individual", etc.) trait_row = 1 # Age: row 2 (contains "age: 55 - 59", "age: 70 - 74", etc.) age_row = 2 # Gender: row 5 (contains "Sex: female", "Sex: male", etc.) gender_row = 5 # 2.2 Define data type conversions def convert_trait(value: str): """ Convert the value in row 1 into a binary indicator for breast cancer. 'isolate: breast cancer patient' -> 1 'isolate: healthy individual' -> 0 otherwise -> None """ parts = value.split(':', 1) if len(parts) < 2: return None v = parts[1].strip().lower() if 'breast cancer patient' in v: return 1 elif 'healthy individual' in v: return 0 else: return None def convert_age(value: str): """ Convert the value in row 2 into a continuous numeric age. Example: 'age: 55 - 59' -> 57 (midpoint), 'age: not applicable' -> None """ parts = value.split(':', 1) if len(parts) < 2: return None range_str = parts[1].strip().lower() if 'not applicable' in range_str: return None # Attempt to extract numeric values: digits = re.findall(r'\d+', range_str) if len(digits) == 2: low, high = map(int, digits) return (low + high) / 2 elif len(digits) == 1: return int(digits[0]) else: return None def convert_gender(value: str): """ Convert the value in row 5 into a binary indicator for gender. 'Sex: female' -> 0 'Sex: male' -> 1 otherwise -> None """ parts = value.split(':', 1) if len(parts) < 2: return None v = parts[1].strip().lower() if v == 'female': return 0 elif v == 'male': return 1 else: return None # 3. Save Metadata with initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is available) if trait_row is not None: selected_clinical = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Observe the extracted clinical dataframe preview = preview_df(selected_clinical) print("Preview of selected clinical features:", preview) # Save clinical data to CSV selected_clinical.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20])