# Path Configuration from tools.preprocess import * # Processing context trait = "Breast_Cancer" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Breast_Cancer/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Breast_Cancer/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Breast_Cancer/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Breast_Cancer/cohort_info.json" import os import pandas as pd # 1) Identify the subdirectory for "Breast_Cancer" cohort_name = "TCGA_Breast_Cancer_(BRCA)" # Found by matching "Breast_Cancer" with the list of directories cohort_dir = os.path.join(tcga_root_dir, cohort_name) # 2) Identify the paths to clinical and genetic files clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) # 3) Load the files as Pandas DataFrames clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') # 4) Print the column names of the clinical DataFrame print(clinical_df.columns.tolist()) # 1) Identify the candidate columns candidate_age_cols = ['Age_at_Initial_Pathologic_Diagnosis_nature2012', 'age_at_initial_pathologic_diagnosis'] candidate_gender_cols = ['Gender_nature2012', 'gender'] # Print them in the specified format print(f"candidate_age_cols = {candidate_age_cols}") print(f"candidate_gender_cols = {candidate_gender_cols}") # 2) Extract and preview the candidate columns from the clinical data age_subset = clinical_df[candidate_age_cols] if candidate_age_cols else pd.DataFrame() gender_subset = clinical_df[candidate_gender_cols] if candidate_gender_cols else pd.DataFrame() if not age_subset.empty: print("Age subset preview:") print(preview_df(age_subset, n=5)) if not gender_subset.empty: print("Gender subset preview:") print(preview_df(gender_subset, n=5)) # Based on the previews, we see that the second candidate age column ('age_at_initial_pathologic_diagnosis') # contains valid age values, while the first only has NaN. Similarly, the second candidate gender column ('gender') # contains valid gender values, while the first only has NaN. age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" print("Selected age_col:", age_col) print("Selected gender_col:", gender_col) # 1) Extract and standardize clinical features (trait, age, gender) from the TCGA data selected_clinical_df = tcga_select_clinical_features( clinical_df=clinical_df, trait=trait, age_col=age_col, gender_col=gender_col ) # 2) Normalize gene symbols in the gene expression data genetic_df_normalized = normalize_gene_symbols_in_index(genetic_df) genetic_df_normalized.to_csv(out_gene_data_file) # 3) Link clinical and genetic data on sample IDs gene_expr_t = genetic_df_normalized.T linked_data = selected_clinical_df.join(gene_expr_t, how='inner') # 4) Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 5) Determine whether the trait and some demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 6) Validate and save cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Prostate Cancer data from TCGA." ) # 7) If usable, save the final linked data, including clinical and genetic features if is_usable: linked_data.to_csv(out_data_file) # Save clinical subset if present clinical_cols = [col for col in [trait, "Age", "Gender"] if col in linked_data.columns] if clinical_cols: linked_data[clinical_cols].to_csv(out_clinical_data_file)