# Path Configuration from tools.preprocess import * # Processing context trait = "COVID-19" cohort = "GSE216705" # Input paths in_trait_dir = "../DATA/GEO/COVID-19" in_cohort_dir = "../DATA/GEO/COVID-19/GSE216705" # Output paths out_data_file = "./output/preprocess/1/COVID-19/GSE216705.csv" out_gene_data_file = "./output/preprocess/1/COVID-19/gene_data/GSE216705.csv" out_clinical_data_file = "./output/preprocess/1/COVID-19/clinical_data/GSE216705.csv" json_path = "./output/preprocess/1/COVID-19/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if the dataset contains gene expression data is_gene_available = True # Based on "metaData_microarrays.txt", this is likely microarray gene expression data # Step 2: Identify availability of trait, age, and gender data # Since the sample characteristics only have "strain" and "metadata info" with no variation or mention of these variables, # treat them all as not available. trait_row = None age_row = None gender_row = None # Step 2.2: Define the data conversion functions (though they won't be used here because the rows are None) def convert_trait(x: str): # For demonstration, parse after colon; return 1 if "COVID-19" is found, else 0, else None. parts = x.split(':', 1) value = parts[1].strip() if len(parts) > 1 else x if "COVID-19" in value.lower(): return 1 return None def convert_age(x: str): # Convert to continuous age. We do not have actual data, so return None. return None def convert_gender(x: str): # Convert to binary: female -> 0, male -> 1. Return None by default here. return None # Step 3: Conduct initial filtering and save metadata # Trait data is considered available only if trait_row is not None. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Since trait_row is None, we skip clinical feature extraction. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The given identifiers (e.g. "10338001", "10338002") are typically probe IDs from a microarray platform. # They do not look like standard human gene symbols such as "TP53" or "ACTB". # Therefore, gene mapping to standard symbols is required. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the columns in the gene_annotation DataFrame where 'ID' matches the probe identifiers # and 'gene_assignment' contains the gene symbols or descriptive info to be parsed. prob_col = "ID" gene_col = "gene_assignment" # 2. Get a DataFrame mapping from probe IDs to gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col) # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP7: Data Normalization and Linking # 1) Normalize the gene symbols in the previously obtained gene_data normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Load clinical data only if it exists and is non-empty if os.path.exists(out_clinical_data_file) and os.path.getsize(out_clinical_data_file) > 0: # Read the file clinical_temp = pd.read_csv(out_clinical_data_file) # Adjust row index to label the trait, age, and gender properly if clinical_temp.shape[0] == 3: clinical_temp.index = [trait, "Age", "Gender"] elif clinical_temp.shape[0] == 2: clinical_temp.index = [trait, "Gender"] elif clinical_temp.shape[0] == 1: clinical_temp.index = [trait] # 2) Link the clinical and normalized genetic data linked_data = geo_link_clinical_genetic_data(clinical_temp, normalized_gene_data) # 3) Handle missing values linked_data = handle_missing_values(linked_data, trait) # 4) Check for severe bias in the trait; remove biased demographic features if present trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5) Final quality validation and save metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note=f"Final check on {cohort} with {trait}." ) # 6) If the linked data is usable, save it if is_usable: linked_data.to_csv(out_data_file) else: # If no valid clinical data file is found, finalize metadata indicating trait unavailability is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, # Force a fallback so that it's flagged as unusable df=pd.DataFrame(), note=f"No trait data found for {cohort}, final metadata recorded." ) # Per instructions, do not save a final linked data file when trait data is absent.