# Path Configuration from tools.preprocess import * # Processing context trait = "Cardiovascular_Disease" cohort = "GSE262419" # Input paths in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE262419" # Output paths out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE262419.csv" out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE262419.csv" out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE262419.csv" json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info about transcriptomic profiling # 2. Variable Availability # Checking if there's any row that records 'Cardiovascular_Disease', 'age', or 'gender' data. # Here, we see only "cell type: iPSC-Cardiomyocytes" and "treatment: ...", # so none of these variables are truly present or have multiple unique values. trait_row = None age_row = None gender_row = None # 2.2 Data Type Conversion (dummy converters returning None since no data) def convert_trait(x): return None def convert_age(x): return None def convert_gender(x): return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (skip, because trait_row is None) # STEP3 import gzip import io import pandas as pd lines = [] found_begin = False # Read lines between "!series_matrix_table_begin" and "!series_matrix_table_end" with gzip.open(matrix_file, 'rt') as f: for line in f: # If we haven't found the start marker yet, check if it's in the current line if not found_begin: if "!series_matrix_table_begin" in line: found_begin = True continue # If we see the end marker, stop reading further if "!series_matrix_table_end" in line: break # Otherwise, collect this line to parse later lines.append(line) # Attempt to parse the collected lines as a tab-delimited table if lines: data_str = "".join(lines) gene_data = pd.read_csv( io.StringIO(data_str), sep="\t", on_bad_lines="skip" ) # If there's an ID or ID_REF column, try to use it as index if "ID_REF" in gene_data.columns: gene_data.rename(columns={"ID_REF": "ID"}, inplace=True) if "ID" in gene_data.columns: gene_data["ID"] = gene_data["ID"].astype(str) gene_data.set_index("ID", inplace=True) else: gene_data = pd.DataFrame() # Print the first 20 row IDs (if any) to verify data structure if not gene_data.empty: print("First 20 row IDs in the gene expression data:") print(gene_data.index[:20]) else: print("[INFO] The gene expression DataFrame is empty or no data lines were found.")