# Path Configuration from tools.preprocess import * # Processing context trait = "Cardiovascular_Disease" cohort = "GSE283522" # Input paths in_trait_dir = "../DATA/GEO/Cardiovascular_Disease" in_cohort_dir = "../DATA/GEO/Cardiovascular_Disease/GSE283522" # Output paths out_data_file = "./output/preprocess/1/Cardiovascular_Disease/GSE283522.csv" out_gene_data_file = "./output/preprocess/1/Cardiovascular_Disease/gene_data/GSE283522.csv" out_clinical_data_file = "./output/preprocess/1/Cardiovascular_Disease/clinical_data/GSE283522.csv" json_path = "./output/preprocess/1/Cardiovascular_Disease/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Attempt to identify the paths to the SOFT file and the matrix file try: soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) except AssertionError: print("[WARNING] Could not find the expected '.soft' or '.matrix' files in the directory.") soft_file, matrix_file = None, None if soft_file is None or matrix_file is None: print("[ERROR] Required GEO files are missing. Please check file names in the cohort directory.") else: # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("\nSample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability # Based on the series summary, this dataset includes RNA-seq data, so set is_gene_available to True. is_gene_available = True # 2) Variable Availability and Data Type Conversion # 2.1) Data Availability # There's no key with clear "Cardiovascular Disease" info, so trait_row is None. trait_row = None # For age, key 2 contains multiple distinct age ranges, so age_row = 2. age_row = 2 # For gender, key 5 contains 'female' and 'male', so gender_row = 5. gender_row = 5 # 2.2) Data Type Conversion def convert_trait(value: str): """ Since there's no actual cardiovascular disease data here, we return None for all inputs. """ return None def convert_age(value: str): """ Extract numeric age by parsing the string after 'age:'. If it's a range like '55 - 59', we take the midpoint. If it's 'not applicable' or invalid, return None. """ # Split on colon and strip content = value.split(":", 1)[-1].strip().lower() if "not applicable" in content or "missing" in content: return None # If it's in the form 'XX - YY' if "-" in content: parts = content.split("-") try: low = int(parts[0]) high = int(parts[1]) return (low + high) / 2 except ValueError: return None else: # If a single number is found try: return float(content) except ValueError: return None def convert_gender(value: str): """ Convert 'female' to 0, 'male' to 1, otherwise None. """ # Split on colon and strip content = value.split(":", 1)[-1].strip().lower() if "female" in content: return 0 elif "male" in content: return 1 else: return None # 3) Save Metadata # Trait availability depends on whether trait_row is None. is_trait_available = (trait_row is not None) # Because this is not the final step yet, we set is_final=False. # We only perform initial filtering and record the dataset's availability. validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction # We skip this because trait_row is None, indicating the clinical trait data is not available. # STEP3 # Attempt to read gene expression data; if the library function yields an empty DataFrame, # try re-reading without ignoring lines that start with '!' (because sometimes GEO data may # place actual expression rows under lines that begin with '!'). gene_data = get_genetic_data(matrix_file) if gene_data.empty: print("[WARNING] The gene_data is empty. Attempting alternative loading without treating '!' as comments.") import gzip # Locate the marker line first skip_rows = 0 with gzip.open(matrix_file, 'rt') as file: for i, line in enumerate(file): if "!series_matrix_table_begin" in line: skip_rows = i + 1 break # Read the data again, this time not treating '!' as comment gene_data = pd.read_csv( matrix_file, compression="gzip", skiprows=skip_rows, delimiter="\t", on_bad_lines="skip" ) gene_data = gene_data.rename(columns={"ID_REF": "ID"}).astype({"ID": "str"}) gene_data.set_index("ID", inplace=True) # Print the first 20 row IDs to confirm data structure print(gene_data.index[:20])