# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE131027" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE131027" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE131027.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE131027.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE131027.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Determine if gene expression data is available is_gene_available = True # Based on the series description indicating "expression features", assume it's gene expression. # 2) Determine data availability for 'trait', 'age', 'gender'. # From the sample characteristics dictionary, we observe: # Key=1 has various "cancer: ..." entries, including 'cancer: Cervical cancer'. # There's no row for age or gender. Hence age_row = None and gender_row = None. trait_row = 1 age_row = None gender_row = None # 2) Define data type conversions. def convert_trait(value: str): """ Extract the substring after the colon (':') and check if it matches 'Cervical cancer'. Return 1 if it is Cervical cancer, 0 otherwise. If the string is malformed or unknown, return None. """ parts = value.split(':') if len(parts) < 2: return None cancer_type = parts[1].strip().lower() if "cervical cancer" in cancer_type: return 1 else: return 0 def convert_age(value: str): """ Age data is not available in this dataset, so always return None. """ return None def convert_gender(value: str): """ Gender data is not available in this dataset, so always return None. """ return None # 3) Conduct initial filtering and save metadata. # Trait data is considered available if trait_row is not None. is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) If we have trait data (trait_row is not None), extract clinical features and save. if is_trait_available: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the resulting clinical features preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify which columns match the probe identifiers in the gene_data and the gene symbols in the annotation. # Based on the preview, "ID" holds the probe IDs, and "Gene Symbol" holds the gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Gene Symbol") # 2. Convert probe-level to gene-level expression. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print out basic info or preview for confirmation print("Gene data shape after mapping:", gene_data.shape) print("First 5 gene names in mapped data:") print(gene_data.index[:5]) # STEP 7 # 1. Normalize gene symbols in the gene_data, then save to CSV. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final validation and save cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Trait is available. Completed linking and QC steps." ) # 6. If the dataset is usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file)