# Path Configuration from tools.preprocess import * # Processing context trait = "Cervical_Cancer" cohort = "GSE137034" # Input paths in_trait_dir = "../DATA/GEO/Cervical_Cancer" in_cohort_dir = "../DATA/GEO/Cervical_Cancer/GSE137034" # Output paths out_data_file = "./output/preprocess/1/Cervical_Cancer/GSE137034.csv" out_gene_data_file = "./output/preprocess/1/Cervical_Cancer/gene_data/GSE137034.csv" out_clinical_data_file = "./output/preprocess/1/Cervical_Cancer/clinical_data/GSE137034.csv" json_path = "./output/preprocess/1/Cervical_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data( matrix_file, background_prefixes, clinical_prefixes ) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # Step 1: Determine if gene expression data is available is_gene_available = False # Based on "Chromatin accessibility" context, it is not typical gene expression data # Step 2: Identify data availability (rows) and define conversion functions trait_row = None age_row = None gender_row = None def convert_trait(value: str) -> Optional[float]: return None # No trait data found def convert_age(value: str) -> Optional[float]: return None # No age data found def convert_gender(value: str) -> Optional[int]: return None # No gender data found # Step 3: Conduct initial filtering and save metadata # Trait availability is determined by whether trait_row is None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # Step 4: Since trait_row is None, we skip the clinical feature extraction