# Path Configuration from tools.preprocess import * # Processing context trait = "Congestive_heart_failure" cohort = "GSE93101" # Input paths in_trait_dir = "../DATA/GEO/Congestive_heart_failure" in_cohort_dir = "../DATA/GEO/Congestive_heart_failure/GSE93101" # Output paths out_data_file = "./output/preprocess/1/Congestive_heart_failure/GSE93101.csv" out_gene_data_file = "./output/preprocess/1/Congestive_heart_failure/gene_data/GSE93101.csv" out_clinical_data_file = "./output/preprocess/1/Congestive_heart_failure/clinical_data/GSE93101.csv" json_path = "./output/preprocess/1/Congestive_heart_failure/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Decide gene availability based on the background information is_gene_available = True # The dataset mentions transcriptomic (gene expression) data # 2. Identify variable availability and define data type conversion functions # From the sample characteristics, we found: # trait_row = 0 (the "course: ..." field includes "Congestive heart failure" among multiple values) # age_row = 1 (the "age: ..." field has multiple values) # gender_row = 2 (the "gender: F/M" field has multiple values) trait_row = 0 age_row = 1 gender_row = 2 # 2.2 Define conversion functions def convert_trait(x: str) -> int: val = x.split(':')[-1].strip().lower() return 1 if val == "congestive heart failure" else 0 def convert_age(x: str) -> Optional[float]: val = x.split(':')[-1].strip() try: return float(val) except ValueError: return None def convert_gender(x: str) -> Optional[int]: val = x.split(':')[-1].strip().upper() if val == "F": return 0 elif val == "M": return 1 else: return None # 3. Save metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait_row is not None, extract clinical features if trait_row is not None: clinical_features = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save the extracted clinical features print(preview_df(clinical_features)) clinical_features.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the 'ILMN_xxxxx' format (Illumina probe IDs), these are not HGNC gene symbols # and thus require mapping to standard human gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Identify the matching columns and create a mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="Symbol") # 3. Apply this mapping to convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) # Let's preview the mapped gene_data print(preview_df(gene_data)) # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2. Link the clinical and genetic data on sample IDs linked_data = geo_link_clinical_genetic_data(clinical_features, normalized_gene_data) # 3. Handle missing values linked_data = handle_missing_values(linked_data, trait_col=trait) # 4. Determine whether the trait and demographic features are severely biased trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Final quality validation and saving metadata is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=linked_data, note="Processed dataset for congestive heart failure." ) # 6. If usable, save the final linked data if is_usable: linked_data.to_csv(out_data_file)