# Path Configuration from tools.preprocess import * # Processing context trait = "Congestive_heart_failure" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Congestive_heart_failure/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Congestive_heart_failure/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Congestive_heart_failure/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Congestive_heart_failure/cohort_info.json" import os import re import pandas as pd # 1. Identify a suitable subdirectory for "Congestive_heart_failure" subdirs = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] # Look for any directories that match strings associated with "Congestive_heart_failure" candidate_subdirs = [s for s in subdirs if re.search(r'(heart|cardiac|failure)', s, re.IGNORECASE)] if not candidate_subdirs: # 2. No suitable directory; skip this trait print("No matching subdirectory found for Congestive_heart_failure. Skipping this trait.") else: # If a match was found (unlikely in this list), proceed with loading chosen_subdir = candidate_subdirs[0] cohort_dir = os.path.join(tcga_root_dir, chosen_subdir) clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir) clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t') print("Clinical Data Columns:", clinical_df.columns.tolist())