# Path Configuration from tools.preprocess import * # Processing context trait = "Cystic_Fibrosis" cohort = "GSE129168" # Input paths in_trait_dir = "../DATA/GEO/Cystic_Fibrosis" in_cohort_dir = "../DATA/GEO/Cystic_Fibrosis/GSE129168" # Output paths out_data_file = "./output/preprocess/1/Cystic_Fibrosis/GSE129168.csv" out_gene_data_file = "./output/preprocess/1/Cystic_Fibrosis/gene_data/GSE129168.csv" out_clinical_data_file = "./output/preprocess/1/Cystic_Fibrosis/clinical_data/GSE129168.csv" json_path = "./output/preprocess/1/Cystic_Fibrosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene expression data availability is_gene_available = True # This dataset provides transcriptome data for CF iPSCs, so we consider it as gene expression data. # 2) Variable Availability # Observing the sample characteristics dictionary, row=2 contains genotype info # indicating CF vs non-CF lines (p.Phe508del vs gene-corrected/WT). # No suitable age or gender info is present. trait_row = 2 age_row = None gender_row = None # 2) Data Type Conversion def convert_trait(value): if not value or pd.isnull(value): return None val = value.split(':')[-1].strip().lower() # Mark p.Phe508del (but not gene-corrected) as CF if 'p.phe508del' in val and 'gene corrected' not in val: return 1 return 0 def convert_age(value): return None # Not available def convert_gender(value): return None # Not available # 3) Save Metadata: initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction # Proceed only if the trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview preview_result = preview_df(selected_clinical_df) print("Preview of selected clinical features:", preview_result) # Save to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the index names like "A_23_P100001", these are array probe IDs rather than standard human gene symbols. # Therefore, they need to be mapped to gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1) Identify the columns in gene_annotation that correspond to the probe ID and gene symbol probe_col = "ID" symbol_col = "GENE_SYMBOL" # 2) Obtain the mapping dataframe mapping_df = get_gene_mapping(gene_annotation, probe_col, symbol_col) # 3) Convert probe-level measurements to gene expression data by applying the mapping gene_data = apply_gene_mapping(gene_data, mapping_df) import pandas as pd # STEP7 # 1. Normalize the obtained gene data with the 'normalize_gene_symbols_in_index' function from the library. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Based on Step 2, we concluded trait_row = 2 (thus trait data is available). is_trait_available = True if not is_trait_available: # 2-4: Skip linking, missing value handling, and bias checks because trait is unavailable. empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="Trait data not available; skipping further steps." ) else: # 2. Load the clinical data from the previous step and set its index to the trait name selected_clinical_data = pd.read_csv(out_clinical_data_file) selected_clinical_data.index = [trait] # Link the clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_data, normalized_gene_data) # 3. Handle missing values in the linked data linked_data = handle_missing_values(linked_data, trait) # 4. Determine whether the trait and demographic features are severely biased is_trait_biased, unbiased_linked_data = judge_and_remove_biased_features(linked_data, trait) # 5. Conduct final quality validation and save the cohort information is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=is_trait_biased, df=unbiased_linked_data, note="Final check after linking and missing-value handling." ) # 6. If the dataset is usable, save it as CSV if is_usable: unbiased_linked_data.to_csv(out_data_file)