# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE40785" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE40785" # Output paths out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE40785.csv" out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE40785.csv" out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE40785.csv" json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if the dataset contains gene expression data # Based on the series description, there are gene probes and expression profiling. # So we conclude it likely has suitable gene expression data (not just miRNA or methylation). is_gene_available = True # 2. Determine availability of trait, age, and gender # From the dictionary, we see various "histology:" entries at key=1, including "histology: Endometrioid". # This indicates trait data is present (key=1). No mention of age or gender data was found in the dictionary. trait_row = 1 age_row = None gender_row = None # 2.2 Data Type Conversion # We'll define functions that convert the raw strings to appropriate data types. # Trait: We'll treat "Endometrioid" or values containing "Endometrioid" as 1, and anything else as 0. def convert_trait(value: str) -> Optional[int]: if not isinstance(value, str): return None # Split on colon if present parts = value.split(':', 1) val = parts[-1].strip().lower() # value after colon, or the entire string if no colon if 'endometrioid' in val: return 1 elif 'histology' in val or 'mucinous' in val or 'clear cell' in val or 'serous' in val: return 0 return None # for unknown cases # Since we don't have age_row or gender_row, we only define simple converters returning None if called. def convert_age(value: str) -> Optional[float]: return None def convert_gender(value: str) -> Optional[int]: return None # 3. Conduct initial filtering on dataset usability and save metadata is_trait_available = (trait_row is not None) is_usable_flag = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: # Assume "clinical_data" is the DataFrame obtained previously selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the selected clinical features clinical_preview = preview_df(selected_clinical_df) print("Preview of Clinical Features:", clinical_preview) # Save the extracted clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the given gene expression data indices (e.g., "ILMN_1343291"), these are Illumina probe IDs, # not standard human gene symbols. Hence, gene mapping is required. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Determine columns for probe IDs ("ID") and gene symbols ("Symbol") from our annotation. # Then extract a gene mapping DataFrame with two columns: [ID, Gene]. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol') # 3. Convert probe-level measurements to gene-level expression using the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Let's preview and then save the resulting gene-level expression data. print("Preview of gene-level expression data:", preview_df(gene_data)) gene_data.to_csv(out_gene_data_file) import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Read back the clinical dataframe saved in Step 2. # According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index. selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples) # Rename the row index to the trait (e.g., "Eczema") selected_clinical_df.index = [trait] # 2) Link the clinical and gene expression data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values using the trait column final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographic features if they existed) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation. Since we do have trait data, set is_trait_available=True is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted from Step 2." ) # 6) If the dataset is deemed usable, save final linked data if is_usable: final_data.to_csv(out_data_file)