# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE65986" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE65986" # Output paths out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE65986.csv" out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE65986.csv" out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE65986.csv" json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available # From the background info: "Gene expression ... was analyzed by Affymetrix U133plus2 array." # Hence, it is gene expression rather than miRNA or methylation data. is_gene_available = True # 2. Identify data availability for trait, age, gender, and define conversion functions # Observed keys in the sample characteristics dictionary: # 0 -> histology: [Clear, Endometrioid, Serous] # 1 -> age: [64, 57, ...] # 2 -> Stage: ... # 3 -> pfs: ... # 4 -> prognosis: ... # There is no key containing gender data, and it is likely all female since this is an ovarian cancer study. trait_row = 0 # row 0 has multiple values including "Endometrioid", so it is not constant and is relevant to our trait. age_row = 1 # row 1 has multiple age values, so it is valid. gender_row = None # no gender info is available or it is constant (all female), so treat as not available. def convert_trait(value: str): """Convert the 'histology' entries to a binary trait. 'Endometrioid' -> 1, others -> 0.""" val = value.split(':')[-1].strip().lower() if val == 'endometrioid': return 1 elif val in ['clear', 'serous']: return 0 return None # unknown or unexpected text def convert_age(value: str): """Convert 'age' entries to a continuous numeric type.""" val = value.split(':')[-1].strip() try: return float(val) except: return None def convert_gender(value: str): """Convert 'gender' entries to binary: female->0, male->1. Although not used here, define for completeness.""" val = value.split(':')[-1].strip().lower() if val == 'female': return 0 elif val == 'male': return 1 return None # 3. Save metadata after initial filtering is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical feature extraction if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, # clinical_data is assumed to be already loaded from a previous step trait, trait_row, convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview and save print("Preview of selected clinical features:\n", preview_df(selected_clinical_df)) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These IDs are Affymetrix probe set identifiers, not standard gene symbols. # They require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the corresponding columns in the annotation dataframe for probe IDs and gene symbols probe_col = "ID" gene_symbol_col = "Gene Symbol" # 2. Get the gene mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=gene_symbol_col) # 3. Convert probe-level measurements to gene expression data gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print shape and preview if desired print("Mapped gene_data dimensions:", gene_data.shape) print("Preview of mapped gene_data:\n", gene_data.iloc[:5, :5]) import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Read the clinical dataframe with header=0 to ensure the first row is recognized as column headers, # leaving two rows of data to be indexed as [trait, "Age"]. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait, "Age"] # 3) Link the clinical and gene expression data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 4) Handle missing values using the trait column final_data = handle_missing_values(linked_data, trait_col=trait) # 5) Evaluate bias in the trait (and remove biased demographic features if they existed) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 6) Final validation. Since we do have trait data, set is_trait_available=True is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait and Age data in the first two rows of the clinical CSV." ) # 7) If the dataset is deemed usable, save final linked data if is_usable: final_data.to_csv(out_data_file)