# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE68600" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE68600" # Output paths out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE68600.csv" out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE68600.csv" out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE68600.csv" json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # "Assay Type: Gene Expression" indicates gene expression data is likely present. # 2. Variable Availability and Data Type Conversion # Observing the sample characteristics dictionary: # - trait ("Endometrioid_Cancer") can be inferred from row 4 (histology). # - age is not found => age_row = None. # - gender appears to be uniformly female => no variability => gender_row = None. trait_row = 4 age_row = None gender_row = None # Define data-conversion functions: def convert_trait(sample_value: str): """ Convert sample_value into a binary representation: 1 if 'endometrioid' is found in the histology, 0 if it is any other histology, None if it can't be parsed. """ parts = sample_value.split(':', 1) if len(parts) < 2: return None val = parts[1].strip().lower() # Mark samples with 'endometrioid' as 1, all others as 0 if 'endometrioid' in val: return 1 else: return 0 def convert_age(sample_value: str): # Age data is not available in this dataset, so return None return None def convert_gender(sample_value: str): # Gender is uniformly female, so it's not useful for analysis. Return None. return None # Determine whether trait data is available is_trait_available = (trait_row is not None) # 3. Save Metadata (Initial Filtering) dataset_passed_filtering = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait data is available) if trait_row is not None: # 'clinical_data' is assumed to be the DataFrame containing the sample characteristics selected_clinical_df = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical data print(preview_df(selected_clinical_df)) # Save the extracted clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the identifiers, these appear to be Affymetrix probe IDs rather than standard gene symbols. # Therefore, they require mapping to gene symbols. requires_gene_mapping = True # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # Gene Identifier Mapping prob_col = 'ID' gene_col = 'Gene Symbol' # 1 & 2. Identify the columns for the probe IDs and gene symbols, then retrieve the mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col=prob_col, gene_col=gene_col) # 3. Convert probe-level data to gene-level data gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print a brief preview of the mapped gene_data print("Mapped gene expression data shape:", gene_data.shape) print("First 5 genes:\n", gene_data.head(5)) import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Read back the clinical dataframe saved in Step 2. # According to Step 2, we saved 1 row (the trait) × N columns (the samples) without the row index. selected_clinical_df = pd.read_csv(out_clinical_data_file) # shape: (1, number_of_samples) # Rename the row index to the trait (e.g., "Eczema") selected_clinical_df.index = [trait] # 2) Link the clinical and gene expression data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values using the trait column final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographic features if they existed) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation. Since we do have trait data, set is_trait_available=True is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted from Step 2." ) # 6) If the dataset is deemed usable, save final linked data if is_usable: final_data.to_csv(out_data_file)