# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE73614" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73614" # Output paths out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE73614.csv" out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE73614.csv" out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE73614.csv" json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if the dataset contains gene expression data is_gene_available = True # Based on background info describing transcriptional profiling # 2. Identify the availability of trait, age, and gender # From the sample characteristics dictionary, we only see {0: ['tissue: ovarian']}. # This has no variation (same value for all samples) and does not provide the Endometrioid_Cancer distinction. # Hence, there's no useful variable for trait, age, or gender. trait_row = None age_row = None gender_row = None # 2.2. Define type-conversion functions. def convert_trait(value: str) -> Optional[int]: """ Binary conversion for 'Endometrioid_Cancer': Return 1 if the value indicates endometrioid, 0 if indicates something else, None if unknown. """ parts = value.split(':', 1) val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower() if 'endometrioid' in val: return 1 elif 'serous' in val or 'clear' in val or 'ovarian' in val: return 0 return None def convert_age(value: str) -> Optional[float]: """ Continuous conversion for age: Try to parse a number from the string, return None if parsing fails. """ parts = value.split(':', 1) val_str = parts[-1].strip() if len(parts) > 1 else value.strip() try: return float(val_str) except ValueError: return None def convert_gender(value: str) -> Optional[int]: """ Binary conversion for gender: Return 0 for female, 1 for male, None if unknown. """ parts = value.split(':', 1) val = parts[-1].strip().lower() if len(parts) > 1 else value.strip().lower() if val in ['female', 'f']: return 0 elif val in ['male', 'm']: return 1 return None # 3. Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Since trait_row is None, we skip the clinical feature extraction step # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) requires_gene_mapping = True # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Determine which columns match the gene expression dataset and the gene symbols probe_col = "ID" symbol_col = "GENE_SYMBOL" # 2. Extract the gene identifier and gene symbol columns to form a mapping dataframe mapping_df = get_gene_mapping(gene_annotation, prob_col=probe_col, gene_col=symbol_col) # 3. Convert the probe-level expression data to gene-level expression data gene_data = apply_gene_mapping(gene_data, mapping_df) print("Gene mapping completed. Final gene_data shape:", gene_data.shape) import os import pandas as pd # STEP7 # 1) Normalize gene symbols in our gene_data and save the result normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # 2) Check if the clinical data file (trait data) exists if not os.path.exists(out_clinical_data_file): print(f"File not found: {out_clinical_data_file}. No trait data is available for this cohort.") # Perform an initial/partial validation because trait data is missing is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False ) else: # 3) Trait data is present, so read it and link with gene data selected_clinical_df = pd.read_csv(out_clinical_data_file) # Rename the single row index to match the trait name selected_clinical_df.index = [trait] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 4) Handle missing values, using the trait column name final_data = handle_missing_values(linked_data, trait_col=trait) # 5) Check whether the trait (and optional demographics) are severely biased trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 6) Conduct final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted and processed." ) # 7) If the dataset is deemed usable, save the final linked data if is_usable: final_data.to_csv(out_data_file)