# Path Configuration from tools.preprocess import * # Processing context trait = "Endometrioid_Cancer" cohort = "GSE94524" # Input paths in_trait_dir = "../DATA/GEO/Endometrioid_Cancer" in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE94524" # Output paths out_data_file = "./output/preprocess/1/Endometrioid_Cancer/GSE94524.csv" out_gene_data_file = "./output/preprocess/1/Endometrioid_Cancer/gene_data/GSE94524.csv" out_clinical_data_file = "./output/preprocess/1/Endometrioid_Cancer/clinical_data/GSE94524.csv" json_path = "./output/preprocess/1/Endometrioid_Cancer/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the background info, assume gene expression data is available. # 2. Variable Availability and Data Type Conversion # 2.1 Identify row keys (None if not available or constant) # The sample characteristics dictionary only has one key, 0, whose value is # "tissue: endometrioid adenocarcinoma" (single unique value). # Therefore, no meaningful variation for trait, age, or gender. trait_row = None age_row = None gender_row = None # 2.2 Define conversion functions def convert_trait(value: str) -> int: # No data available, but if needed, here's a placeholder. return None def convert_age(value: str) -> float: # No data available, but if needed, here's a placeholder. return None def convert_gender(value: str) -> int: # No data available, but if needed, here's a placeholder. return None # 3. Save Metadata (initial filtering) - trait is unavailable if trait_row is None is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Skip because trait_row is None (no available clinical variation).