# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE138297" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE138297" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE138297.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE138297.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE138297.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Determine if gene expression data is available # From the background info, it's a microarray dataset for gene expression. is_gene_available = True # 2. Determine the availability and the corresponding row indices for trait, age, and gender # The trait is "Endometriosis", but the dictionary does not contain any row with that info. # => trait_row is None trait_row = None # The 'age' data is found in row 3 with multiple distinct values. age_row = 3 # The 'gender' data is found in row 1 with values "sex (female=1, male=0): 1" and "sex (female=1, male=0): 0". gender_row = 1 # 2.2 Define the data type conversion functions def convert_trait(value: str) -> Optional[int]: # Since trait data is not actually available in this dataset, we return None return None def convert_age(value: str) -> Optional[float]: # Example of input: "age (yrs): 49" # We'll parse out the part after the colon and convert to float try: val = value.split(":", 1)[1].strip() return float(val) except: return None def convert_gender(value: str) -> Optional[int]: # Example of input: "sex (female=1, male=0): 1" # The part after the colon is '1' (meaning female in the original dataset), # but per instructions we want female -> 0, male -> 1. try: val = value.split(":", 1)[1].strip() if val == "1": return 0 # female elif val == "0": return 1 # male else: return None except: return None # 3. Save metadata with initial filtering # Trait data is not available, so we expect the dataset to be filtered out. is_trait_available = (trait_row is not None) is_dataset_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. If trait_row is not None, extract and preview clinical features. # Since trait_row is None, we SKIP this step.