# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE145701" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE145701" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE145701.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE145701.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE145701.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background information, this dataset uses an Affymetrix Human Gene 1.0 ST array # (i.e., gene-expression microarray). Therefore, it likely contains gene expression data. is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Identify the corresponding rows for each variable. # From the sample characteristics dictionary, disease state data is in row 2, # which clearly differentiates Normal and Endometriosis (Stage I, Stage IV). # Hence, trait_row = 2. Age and gender are either missing or constant, so set them to None. trait_row = 2 age_row = None gender_row = None # 2.2 Choose data types and write conversion functions. # Trait data => binary (Normal -> 0, Endometriosis -> 1). # Age/gender are unavailable, so the conversion functions will simply return None. def convert_trait(value: str) -> Optional[int]: """ Convert disease state string to a binary integer: Normal -> 0, Endometriosis Stage I/IV -> 1. Unknown values -> None. """ # Extract the part after colon, if present. parts = value.split(':', 1) if len(parts) == 2: val = parts[1].strip().lower() else: val = value.strip().lower() if "normal" in val: return 0 elif "endo" in val: # covers "Endometriosis stage I" and "Endometriosis stage IV" return 1 return None def convert_age(value: str) -> Optional[float]: # Age data is not provided or is constant, so we treat it as not available. return None def convert_gender(value: str) -> Optional[int]: # Gender is all "Female", so it is constant and effectively unavailable. return None # 3. Save Metadata (initial filtering) # Trait data is available if trait_row is not None. # So is_trait_available = True. Then we call validate_and_save_cohort_info with is_final=False. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # This step is only performed if trait_row is not None (meaning clinical data is available). if trait_row is not None: # Suppose the previously obtained clinical data is in a DataFrame called clinical_data. # Extract relevant features: selected_clinical_df = geo_select_clinical_features( clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted data preview_dict = preview_df(selected_clinical_df, n=5, max_items=200) # Save the clinical features to CSV selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) print("These IDs appear to be numeric probe identifiers rather than standard human gene symbols.") print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the matching columns in the gene_annotation DataFrame: # - 'ID' contains the probe identifiers matching gene_data.index # - 'gene_assignment' contains gene symbol information probe_col = "ID" gene_symbol_col = "gene_assignment" # 2. Create a mapping DataFrame from probe ID to gene symbol mapping_df = get_gene_mapping(gene_annotation, probe_col, gene_symbol_col) # 3. Apply the mapping to convert probe-level expressions to gene-level expressions gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Print summary for verification print(f"Finished mapping probes to gene symbols. Gene expression matrix shape: {gene_data.shape}") print("First 10 gene symbols in final gene_data index:") print(gene_data.index[:10]) # STEP 7 import pandas as pd # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait] # Ensure the clinical row is labeled by the trait linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")