# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE145702" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE145702" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE145702.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE145702.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE145702.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the background stating "Gene Transcription" data is present # 2. Variable Availability and Data Type Conversion # 2.1 Identify which dictionary key holds the data trait_row = 2 # "disease state: Normal/Endometriosis Stage I/Endometriosis Stage IV" age_row = None gender_row = None # Only "Female" found, so it's constant and not useful # 2.2 Define conversion functions def convert_trait(value: str): # Extract the part after the colon parts = value.split(':') val_str = parts[-1].strip().lower() if len(parts) > 1 else value.lower() # Convert to binary: Normal => 0, Endometriosis => 1, otherwise None if val_str.startswith("normal"): return 0 elif val_str.startswith("endometriosis"): return 1 return None def convert_age(value: str): # No age data available return None def convert_gender(value: str): # No useful variation in gender data return None # 3. Conduct initial filtering and save metadata is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction (only if trait_row is not None) if trait_row is not None: df_clin = geo_select_clinical_features( clinical_df=clinical_data, trait=trait, trait_row=trait_row, convert_trait=convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) # Preview the extracted clinical features preview_dict = preview_df(df_clin, n=5) print("Clinical Features Preview:", preview_dict) # Save the clinical data df_clin.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers appear to be probe IDs (numeric), not standard human gene symbols. # Therefore, they likely require gene mapping. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP 6: Gene Identifier Mapping # 1 & 2. Determine the columns in the annotation dataframe that match probe IDs and gene symbols, respectively. # From observation, "ID" matches the probe identifiers in our gene_data index, # and "gene_assignment" seems to contain gene symbol information. mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment") # 3. Convert probe-level expression measurements to gene-level expression by applying the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # STEP 7 import pandas as pd # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Read back the clinical data, reassign its single row index to the trait name, and link with genetic data. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait] # Ensure the clinical row is labeled by the trait linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")