# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE37837" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE37837" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE37837.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE37837.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE37837.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # Based on the series description indicating it is a "whole genome expression" dataset. # 2. Variable Availability and Data Type Conversion # 2.1 Identify keys and check uniqueness # The entire cohort is diagnosed with endometriosis (no separate controls), # so the trait does not vary within this dataset. Therefore, trait_row = None. trait_row = None # Age data is found in key 0 with multiple distinct values. age_row = 0 # Gender data is found in key 1, but it has only one unique value ("female"). # Hence, it does not vary, so gender_row = None. gender_row = None # 2.2 Define conversion functions for these variables. def convert_trait(value: str): """ Since trait_row is None (no variation), this function is unused. Provide a placeholder for completeness. """ return None def convert_age(value: str): """ Extracts the numeric part after the colon for age data and converts to float. Returns None if parsing fails. Example input: "age (y): 29" """ try: after_colon = value.split(':', 1)[1].strip() return float(after_colon) except: return None def convert_gender(value: str): """ Since gender is not varying, this function is unused. Provide a placeholder. """ return None # 3. Save Metadata (initial filtering) is_trait_available = (trait_row is not None) validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip this step. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on observation, these are not standard human gene symbols. # Therefore, gene mapping is required. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1. Identify the appropriate columns for probe ID and gene symbol: # From the annotation preview, the "ID" column matches the gene expression data index, # and "GENE_SYMBOL" holds the actual gene symbols. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # 2. Convert probe-level measurements to gene-level expressions gene_data = apply_gene_mapping(gene_data, mapping_df) # (Optional) Inspect the resulting gene_data print("Mapped gene_data shape:", gene_data.shape) print(gene_data.head()) import os import pandas as pd # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # Because trait_row was None in a previous step, there's no trait variation (everyone has the same trait value). # We'll finalize the dataset as unusable due to lack of trait variation, # but still must provide df and is_biased to comply with the final validation requirements. empty_df = pd.DataFrame() # Minimal placeholder DataFrame is_biased = True # Arbitrarily set to True; actual value won't matter if trait is unavailable # Perform final validation with no trait data is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, # We do have gene expression is_trait_available=False, # But there's no valid trait variation is_biased=is_biased, df=empty_df, note="No trait variation => dataset not usable for trait-based analysis." ) print("Dataset finalized but is not usable due to lack of trait data; no final data saved.")