# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE73622" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE73622" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE73622.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE73622.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE73622.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1) Gene Expression Data Availability # Based on the series description indicating transcriptome analysis, we consider this dataset to contain gene expression data. is_gene_available = True # 2) Variable Availability and Data Type Conversion # From the sample characteristics dictionary: # - The disease status ("Endometriosis" or "No Endometriosis") is at key 0 # - The age information is at key 3 # - No gender information is observed in the dictionary trait_row = 0 age_row = 3 gender_row = None # Define data conversion functions def convert_trait(value: str): parts = value.split(":") if len(parts) > 1: val = parts[1].strip().lower() if val == "endometriosis": return 1 elif val == "no endometriosis": return 0 return None def convert_age(value: str): parts = value.split(":") if len(parts) > 1: val = parts[1].strip() try: return float(val) except ValueError: return None return None def convert_gender(value: str): # Not used here, but defined for completeness parts = value.split(":") if len(parts) > 1: val = parts[1].strip().lower() if val in ["female", "f"]: return 0 elif val in ["male", "m"]: return 1 return None # 3) Save Metadata # Determine if trait data is available (based on whether trait_row is None) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4) Clinical Feature Extraction # Only proceed if trait data is available if trait_row is not None: selected_clinical_df = geo_select_clinical_features( clinical_data, trait, trait_row, convert_trait, age_row=age_row, convert_age=convert_age, gender_row=gender_row, convert_gender=convert_gender ) preview_result = preview_df(selected_clinical_df, n=5) print("Preview of extracted clinical data:", preview_result) selected_clinical_df.to_csv(out_clinical_data_file, index=False) # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # Based on the observed identifiers, these appear to be probe IDs rather than standard human gene symbols. # They likely require mapping to gene symbols. print("requires_gene_mapping = True") # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # 1. Use "ID" as the probe column and "gene_assignment" as the gene symbol column. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment') # 2. Convert probe-level measurements to gene-level measurements by applying the mapping. gene_data = apply_gene_mapping(gene_data, mapping_df) # Just to observe the first few row indices of the newly formed gene_data for verification print("Mapped gene_data preview:", gene_data.index[:20]) # STEP 7 import pandas as pd # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Read back the clinical data, then assign the appropriate row index to match how it was saved. # From the step 2 output, we know there are exactly 2 rows in the CSV: # Row 0 => trait (Endometriosis), Row 1 => Age selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) selected_clinical_df.index = [trait, "Age"] # Convert the 2-rows into a row index # Now columns are sample IDs, rows are [Endometriosis, Age]. # Link clinical and genetic data linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 4. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 5. Perform final validation with full dataset information. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 6. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")