# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" cohort = "GSE75427" # Input paths in_trait_dir = "../DATA/GEO/Endometriosis" in_cohort_dir = "../DATA/GEO/Endometriosis/GSE75427" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/GSE75427.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/GSE75427.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/GSE75427.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability is_gene_available = True # From the background ("Expression profiles..."), we infer mRNA expression data is provided # 2. Variable Availability and Data Type Conversion # Inspecting the sample characteristics dictionary, we see: # 0 -> ["cell type: proliferative phase normal endometrium"] (only one unique value, not useful for trait) # 1 -> ["gender: Female"] (only female, no variation) # 2 -> ["age: 37y", "age: 47y", "age: 53y", "age: 41y"] (multiple unique values, so age is available) # 3 -> ["treatment: ...", "treatment: ..."] (treatment info, not needed for this analysis) # Therefore: trait_row = None # Not available or no variation for trait (endometriosis) age_row = 2 # Available and has variation gender_row = None # All female, no variation # Define the conversion functions def convert_trait(x: str): """ Convert a raw trait value to a binary representation (0 or 1), or None if unknown. However, since trait_row is None, this function will not be used here. """ # Placeholder implementation return None def convert_age(x: str): """ Convert a string like 'age: 37y' to a continuous numeric value (e.g., 37). Return None if parsing fails. """ # Split by colon, take the value part, strip and remove 'y' if present parts = x.split(':') if len(parts) < 2: return None val = parts[1].strip() val = val.replace('y', '').strip() try: return float(val) except ValueError: return None def convert_gender(x: str): """ Convert a raw gender value to binary (female=0, male=1). Return None if unknown. However, since gender_row is None, this function will not be used here. """ # Placeholder implementation return None # 3. Save Metadata (Initial filtering) is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip this step (the instructions say to skip if trait_row is None). # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # These identifiers (e.g., A_19_P00315452) appear to be probe IDs rather than standard human gene symbols. requires_gene_mapping = True # STEP5 # 1. Use the 'get_gene_annotation' function from the library to get gene annotation data from the SOFT file. gene_annotation = get_gene_annotation(soft_file) # 2. Use the 'preview_df' function from the library to preview the data and print out the results. print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP6: Gene Identifier Mapping # Based on the reviewer's feedback, it appears that the annotation file does not contain # a column with "A_19_P..." probe IDs that match the row indices in gene_data. The "ID" # column in gene_annotation shows entries like "(+)E1A_r60_1", which do not match "A_19_P..." # probe IDs. Therefore, the mapping will likely produce an empty or nearly empty DataFrame. # In a real workflow, we would ideally obtain the correct annotation file that contains # matching probe identifiers. For now, we'll proceed with the current annotation data, # noting that it may yield no usable mapping. print( "Warning: No column in gene_annotation matches the 'A_19_P...' probe IDs. " "Mapping will likely result in an empty gene expression DataFrame." ) # 1. We'll continue using 'ID' for the probe column and 'GENE_SYMBOL' for the gene symbol column, # even though they likely won't match the gene_data row indices. mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL') # 2. Convert probe-level measurements to gene-level measurements. gene_data = apply_gene_mapping(gene_data, mapping_df) # Display shape for diagnostic purposes print("Resulting gene_data shape after mapping:", gene_data.shape) import os # STEP 7 # 1. Normalize the gene expression data to standard gene symbols. normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) print("Normalized gene expression data saved to:", out_gene_data_file) # 2. Check if clinical data exists (trait was available) before attempting to link. if not os.path.exists(out_clinical_data_file): print("No clinical data file found. Trait is likely unavailable; skipping linking and final data steps.") # We only have partial data, so perform a non-final validation to record that the dataset is unusable. is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False ) print("Dataset is not usable or missing trait data. No final data saved.") else: # We have clinical data, so proceed with linking and subsequent steps. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # 3. Link the clinical and genetic data on sample IDs. linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 4. Handle missing values systematically. df = handle_missing_values(linked_data, trait) # 5. Determine whether the trait or demographic features are biased; remove biased demographic features. trait_biased, df = judge_and_remove_biased_features(df, trait) # 6. Perform final validation with the fully preprocessed dataset. is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=df, note="Final step with linking, missing-value handling, bias checks." ) # 7. If the data is usable, save the final linked data. if is_usable: df.to_csv(out_data_file) print(f"Final linked data saved to: {out_data_file}") else: print("Dataset is not usable or severely biased. No final data saved.")