# Path Configuration from tools.preprocess import * # Processing context trait = "Endometriosis" # Input paths tcga_root_dir = "../DATA/TCGA" # Output paths out_data_file = "./output/preprocess/1/Endometriosis/TCGA.csv" out_gene_data_file = "./output/preprocess/1/Endometriosis/gene_data/TCGA.csv" out_clinical_data_file = "./output/preprocess/1/Endometriosis/clinical_data/TCGA.csv" json_path = "./output/preprocess/1/Endometriosis/cohort_info.json" import os # Step 1: Identify subdirectory that might relate to our trait "Endometriosis" subdirs = [ 'CrawlData.ipynb', '.DS_Store', 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)', 'TCGA_Uterine_Carcinosarcoma_(UCS)', 'TCGA_Thyroid_Cancer_(THCA)', 'TCGA_Thymoma_(THYM)', 'TCGA_Testicular_Cancer_(TGCT)', 'TCGA_Stomach_Cancer_(STAD)', 'TCGA_Sarcoma_(SARC)', 'TCGA_Rectal_Cancer_(READ)', 'TCGA_Prostate_Cancer_(PRAD)', 'TCGA_Pheochromocytoma_Paraganglioma_(PCPG)', 'TCGA_Pancreatic_Cancer_(PAAD)', 'TCGA_Ovarian_Cancer_(OV)', 'TCGA_Ocular_melanomas_(UVM)', 'TCGA_Mesothelioma_(MESO)', 'TCGA_Melanoma_(SKCM)', 'TCGA_Lung_Squamous_Cell_Carcinoma_(LUSC)', 'TCGA_Lung_Cancer_(LUNG)', 'TCGA_Lung_Adenocarcinoma_(LUAD)', 'TCGA_Lower_Grade_Glioma_(LGG)', 'TCGA_Liver_Cancer_(LIHC)', 'TCGA_Large_Bcell_Lymphoma_(DLBC)', 'TCGA_Kidney_Papillary_Cell_Carcinoma_(KIRP)', 'TCGA_Kidney_Clear_Cell_Carcinoma_(KIRC)', 'TCGA_Kidney_Chromophobe_(KICH)', 'TCGA_Head_and_Neck_Cancer_(HNSC)', 'TCGA_Glioblastoma_(GBM)', 'TCGA_Esophageal_Cancer_(ESCA)', 'TCGA_Endometrioid_Cancer_(UCEC)', 'TCGA_Colon_and_Rectal_Cancer_(COADREAD)', 'TCGA_Colon_Cancer_(COAD)', 'TCGA_Cervical_Cancer_(CESC)', 'TCGA_Breast_Cancer_(BRCA)', 'TCGA_Bladder_Cancer_(BLCA)', 'TCGA_Bile_Duct_Cancer_(CHOL)', 'TCGA_Adrenocortical_Cancer_(ACC)', 'TCGA_Acute_Myeloid_Leukemia_(LAML)' ] suitable_subdir = None synonyms = ["endometriosis", "endometrioid"] for sd in subdirs: if any(term in sd.lower() for term in synonyms): suitable_subdir = sd break if not suitable_subdir: print(f"No suitable subdirectory found for trait '{trait}'. Skipping this trait.") validate_and_save_cohort_info( is_final=False, cohort="TCGA", info_path=json_path, is_gene_available=False, is_trait_available=False ) else: # Step 2: Identify clinical and genetic file paths clinical_path, genetic_path = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, suitable_subdir)) # Step 3: Load data into dataframes clinical_df = pd.read_csv(clinical_path, index_col=0, sep='\t') genetic_df = pd.read_csv(genetic_path, index_col=0, sep='\t') # Step 4: Print clinical data columns print("Clinical Data Columns:", clinical_df.columns.tolist()) # Step 1: Identify candidate columns candidate_age_cols = ["age_at_initial_pathologic_diagnosis", "days_to_birth"] candidate_gender_cols = ["gender"] # Step 2: Extract and preview the data extracted_cols = candidate_age_cols + candidate_gender_cols if extracted_cols: extracted_data = clinical_df[extracted_cols] preview_dict = preview_df(extracted_data, n=5) print(preview_dict) # Based on the provided dictionary and inspection of values: age_col = "age_at_initial_pathologic_diagnosis" gender_col = "gender" # Print the chosen column names print("Chosen age column:", age_col) print("Chosen gender column:", gender_col) # 1) Extract and standardize clinical features selected_clinical_df = tcga_select_clinical_features( clinical_df=clinical_df, trait=trait, age_col=age_col, gender_col=gender_col ) # Save the selected clinical data selected_clinical_df.to_csv(out_clinical_data_file) # 2) Normalize gene symbols in the gene expression data gene_expression_norm = normalize_gene_symbols_in_index(genetic_df) gene_expression_norm.to_csv(out_gene_data_file) # 3) Link clinical and genetic data on sample IDs # Since our gene expression DataFrame has genes as rows and samples as columns, # we transpose it so that the rows become samples and columns become genes. linked_data = selected_clinical_df.join(gene_expression_norm.T, how='inner') # 4) Handle missing values processed_linked_data = handle_missing_values(linked_data, trait) # 5) Determine whether the dataset is severely biased in its trait or demographics trait_biased, processed_linked_data = judge_and_remove_biased_features(processed_linked_data, trait) # 6) Final quality validation and saving of cohort info is_usable = validate_and_save_cohort_info( is_final=True, cohort="TCGA", info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=processed_linked_data, note="" ) # 7) If usable, save the final linked data if is_usable: processed_linked_data.to_csv(out_data_file)