# Path Configuration from tools.preprocess import * # Processing context trait = "Epilepsy" cohort = "GSE123993" # Input paths in_trait_dir = "../DATA/GEO/Epilepsy" in_cohort_dir = "../DATA/GEO/Epilepsy/GSE123993" # Output paths out_data_file = "./output/preprocess/1/Epilepsy/GSE123993.csv" out_gene_data_file = "./output/preprocess/1/Epilepsy/gene_data/GSE123993.csv" out_clinical_data_file = "./output/preprocess/1/Epilepsy/clinical_data/GSE123993.csv" json_path = "./output/preprocess/1/Epilepsy/cohort_info.json" # STEP1 from tools.preprocess import * # 1. Identify the paths to the SOFT file and the matrix file soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir) # 2. Read the matrix file to obtain background information and sample characteristics data background_prefixes = ['!Series_title', '!Series_summary', '!Series_overall_design'] clinical_prefixes = ['!Sample_geo_accession', '!Sample_characteristics_ch1'] background_info, clinical_data = get_background_and_clinical_data(matrix_file, background_prefixes, clinical_prefixes) # 3. Obtain the sample characteristics dictionary from the clinical dataframe sample_characteristics_dict = get_unique_values_by_row(clinical_data) # 4. Explicitly print out all the background information and the sample characteristics dictionary print("Background Information:") print(background_info) print("Sample Characteristics Dictionary:") print(sample_characteristics_dict) # 1. Gene Expression Data Availability # Based on the background mentioning "Affymetrix HuGene 2.1ST arrays" for whole genome gene expression, # we conclude that gene expression data is available for this dataset. is_gene_available = True # 2. Variable Availability and Data Type Conversion # 2.1 Data Availability # There is no entry for the Epilepsy trait in the sample characteristics. # Hence, trait_row is None. trait_row = None # Age information is not explicitly available in the sample characteristics (only "aged above 65"). # There's no numeric or variable key that specifies different ages per sample. # Hence, age_row is None. age_row = None # For gender, row 1 has two distinct values: "Sex: Male" and "Sex: Female". This is suitable for analysis. # Hence, gender_row is 1. gender_row = 1 # 2.2 Data Type Conversion # For trait and age, there's no data. We'll only define the convert function for gender. def convert_gender(val: str): """ Convert gender data into a binary format: - Male -> 1 - Female -> 0 """ # First split by colon if present parts = val.split(':') if len(parts) > 1: val = parts[-1].strip() val_lower = val.lower() if 'male' in val_lower: return 1 elif 'female' in val_lower: return 0 return None # 3. Save Metadata # Perform the initial filtering step. The trait is not available (trait_row is None). # So is_trait_available is False. We'll store these metadata. is_trait_available = (trait_row is not None) is_usable = validate_and_save_cohort_info( is_final=False, cohort=cohort, info_path=json_path, is_gene_available=is_gene_available, is_trait_available=is_trait_available ) # 4. Clinical Feature Extraction # Since trait_row is None, we skip this step because trait data isn't available. # STEP3 # 1. Use the get_genetic_data function from the library to get the gene_data from the matrix_file previously defined. gene_data = get_genetic_data(matrix_file) # 2. Print the first 20 row IDs (gene or probe identifiers) for future observation. print(gene_data.index[:20]) # The provided identifiers like "16650001" appear to be numeric probe IDs rather than standard human gene symbols. # Hence, gene mapping is needed. print("requires_gene_mapping = True") # STEP5 import pandas as pd import io # 1. Extract the lines that do NOT start with '^', '!', or '#', but do NOT parse them into a DataFrame yet. annotation_text, _ = filter_content_by_prefix( source=soft_file, prefixes_a=['^', '!', '#'], unselect=True, source_type='file', return_df_a=False, return_df_b=False ) # 2. Manually parse the filtered text into a DataFrame, specifying engine="python" to avoid buffer overflow issues. gene_annotation = pd.read_csv( io.StringIO(annotation_text), delimiter='\t', on_bad_lines='skip', engine='python' ) print("Gene annotation preview:") print(preview_df(gene_annotation)) # STEP: Gene Identifier Mapping # 1 & 2. Determine matching columns: use "ID" as the probe identifier and "gene_assignment" for gene symbols mapping_df = get_gene_mapping(gene_annotation, prob_col="ID", gene_col="gene_assignment") # 3. Convert probe-level measurements to gene-level expression gene_data = apply_gene_mapping(gene_data, mapping_df) import os import pandas as pd # STEP7 # 1) Normalize gene symbols and save normalized_gene_data = normalize_gene_symbols_in_index(gene_data) normalized_gene_data.to_csv(out_gene_data_file) # Check whether we actually have a clinical CSV file (i.e., trait data) from Step 2 if os.path.exists(out_clinical_data_file): # 2) Link the clinical and gene expression data # Reload the clinical data. It has 3 rows (trait, Age, Gender) and columns for samples. selected_clinical_df = pd.read_csv(out_clinical_data_file, header=0) # Force the row index to match [trait, 'Age', 'Gender'] so geo_link_clinical_genetic_data works correctly. selected_clinical_df.index = [trait, "Age", "Gender"] linked_data = geo_link_clinical_genetic_data(selected_clinical_df, normalized_gene_data) # 3) Handle missing values final_data = handle_missing_values(linked_data, trait_col=trait) # 4) Evaluate bias in the trait (and remove biased demographics if any) trait_biased, final_data = judge_and_remove_biased_features(final_data, trait) # 5) Final validation is_usable = validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=True, is_biased=trait_biased, df=final_data, note="Trait data successfully extracted; row index manually set in Step 7." ) # 6) If the dataset is usable, save if is_usable: final_data.to_csv(out_data_file) else: # If the clinical file does not exist, the trait is unavailable empty_df = pd.DataFrame() validate_and_save_cohort_info( is_final=True, cohort=cohort, info_path=json_path, is_gene_available=True, is_trait_available=False, is_biased=True, df=empty_df, note="No trait data was found; linking and final dataset output are skipped." )